电力电子新技术系列图书 电力半导体新器件及其制造技术 高清晰可复制文字版
作者:王彩琳 著
出版时间:2015
丛编项:电力电子新技术系列图书
内容简介
《电力电子新技术系列图书:电力半导体新器件及其制造技术》介绍了电力半导体器件的结构、原理、特性、设计、制造工艺、可靠性与失效机理、应用共性技术及数值模拟方法。内容涉及功率二极管、晶闸管及其集成器件[(包括GTO晶闸管、集成门极换流晶闸管(IGCT))]、功率MOSFET、绝缘栅双极型晶体管(IGBT),以及电力半导体器件的功率集成技术、结终端技术、制造技术、共性应用技术、数值分析与模拟技术。重点对GTO的单位电流增益、IGCT的透明阳极和波状基区,功率MOSFET的超结及IGBT的发射极电子注入增强(IE)等新技术进行了详细介绍。
目录
序言
前言
第1章 绪论
1.1 电力半导体器件概述
1.1.1 与电力电子技术关系
1.1.2 定义与分类
1.2 发展概况
1.2.1 电力半导体器件的发展
1.2.2 制造技术的发展
参考文献
第2章 功率二极管
2.1 普通功率二极管
2.1.1 结构类型
2.1.2 工作原理与I-U特性
2.1.3 静态与动态特性
2.2 快速软恢复二极管
2.2.1 结构类型
2.2.2 软恢复的机理及控制
2.3 功率肖特基二极管
2.3.1 结构类型与制作工艺
2.3.2 工作原理与I-U特性
2.3.3 静态特性
2.4 功率二极管的设计
2.4.1 普通功率二极管的设计
2.4.2 快速软恢复二极管的设计
2.4.3 功率肖特基二极管的设计
2.5 功率二极管的应用与失效分析
2.5.1 安全工作区及其限制因素
2.5.2 失效分析
2.5.3 特点与应用范围
参考文献
第3章 晶闸管及其集成器件
3.1 普通晶闸管结构
3.1.1 结构类型
3.1.2 工作原理与特性
3.1.3 静态与动态特性
3.2 门极关断晶闸管(GTO)
3.2.1 结构概述
3.2.2 工作原理与特性
3.2.3 静态与动态特性
3.2.4 硬驱动技术
3.3 集成门极换流晶闸管(IGCT)
3.3.1 结构特点
3.3.2 工作原理与I-U特性
3.3.3 静态与动态特性
3.3.4 关键技术及其原理
3.3.5 驱动电路与特性参数
3.4 其他集成器件
3.4.1 发射极关断晶闸管(ETO)
3.4.2 MOS关断晶闸管(MTO)
3.5 晶闸管的设计
3.5.1 设计方法概述
3.5.2 超高压晶闸管的设计
3.5.3 大电流GTO的设计
3.5.4 IGCT的设计
3.6 晶闸管的应用可靠性与失效分析
3.6.1 普通晶闸管的失效分析
3.6.2 GTO的可靠性与失效分析
3.6.3 IGCT的可靠性与失效分析
3.6.4 晶闸管的特点与应用范围
参考文献
第4章 功率MOSFET
4.1 功率MOSFET的结构类型及特点
4.1.1 基本结构
4.1.2 横向结构
4.2 功率MOSFET的工作原理与特性
4.2.1 等效电路
4.2.2 工作原理与特性参数
4.2.3 静态与动态特性
4.3 超结MOSFET
4.3.1 基本结构及等效电路
4.3.2 派生结构
4.3.3 静态与动态特性
4.4 功率MOSFET的设计
4.4.1 纵向结构的设计
4.4.2 横向结构的设计
4.5 功率MOSFET的应用可靠性与失效分析
4.5.1 应用可靠性
4.5.2 失效分析
4.5.3 特点与应用范围
参考文献
第5章 绝缘栅双极型晶体管(IGBT)
5.1 普通IGBT
5.1.1 结构特点与典型工艺
5.1.2 工作原理与I-U特性
5.1.3 静态与动态特性
5.2 注入增强型IGBT
5.2.1 结构特点与典型工艺
5.2.2 工作原理与注入增强效应
5.2.3 静态与动态特性
5.3 集成化IGBT
5.3.1 逆阻IGBT
5.3.2 双向IGBT
5.3.3 逆导IGBT
5.3.4 双模式IGBT
5.3.5 超结IGBT
5.4 IGBT的设计
5.4.1 纵向结构的设计
5.4.2 横向结构的设计
5.4.3 防闩锁的设计
5.5 IGBT的应用可靠性与失效分析
5.5.1 可靠性
5.5.2 失效分析
5.5.3 应用与发展趋势
参考文献
第6章 功率集成技术
6.1 功率集成技术简介
6.1.1 功率集成概念
6.1.2 功率集成形式
6.1.3 功率集成意义
6.2 功率集成电路
6.2.1 概述
6.2.2 电场调制技术
6.2.3 横向高压器件
6.2.4 隔离技术
6.2.5 设计技术
6.2.6 发展与应用范围
6.3 功率模块
6.3.1 概述
6.3.2 基本构成
6.3.3 封装技术
6.3.4 特能与可靠性
6.3.5 失效分析与安全性
6.3.6 发展趋势
参考文献
第7章 电力半导体器件的结终端技术
7.1 常见的结终端技术
7.1.1 平面结终端技术
7.1.2 台面结终端技术
7.1.3 结终端特性的表征
7.1.4 结终端的制作工艺
7.2 常用结终端结构
7.2.1 功率二极管的结终端结构
7.2.2 MOS型浅结器件的结终端结构
7.2.3 晶闸管的结终端结构
7.2.4 HVIC的结终端结构
7.3 结终端结构的设计
7.3.1 概述
7.3.2 浅结器件复合结终端的设计
7.3.3 深结器件复合结终端的设计
参考文献
第8章 电力半导体器件的制造技术
8.1 概述
8.1.1 发展概况
8.1.2 主要制造技术内容
8.2 衬底材料制备技术
8.2.1 硅衬底
8.2.2 SOI衬底
8.3 基本制造工艺
8.3.1 热氧化
8.3.2 热扩散
8.3.3 离子注入
8.3.4 光刻与刻蚀
8.3.5 化学气相淀积
8.3.6 物理气相淀积
8.3.7 背面减薄工艺
8.3.8 PIC典型工艺
8.4 寿命控制技术
8.4.1 少子寿命
8.4.2 吸杂技术
8.4.3 辐照技术
8.4.4 应用举例
8.5 硅-硅直接键合技术
8.5.1 技术特点
8.5.2 键合的机理与方法
8.5.3 应用举例
8.6 封装技术
8.6.1 中小功率器件的封装
8.6.2 大功率器件的封装
参考文献
第9章 电力半导体器件的应用共性技术
9.1 电力半导体器件的驱动电路
9.1.1 概述
9.1.2 电流驱动
9.1.3 电压驱动
9.2 电力半导体器件的串并联技术
9.2.1 概述
9.2.2 功率二极管的串并联
9.2.3 普通晶闸管的串并联
9.2.4 GTO的串并联
9.2.5 IGCT的串并联
9.2.6 IGBT模块的串并联
9.3 电力半导体器件的过应力保护
9.3.1 概述
9.3.2 保护元器件
9.3.3 吸收电路
9.3.4 保护电路
9.3.5 软开关技术
9.4 电力半导体器件的热传输与热分析
9.4.1 功耗
9.4.2 热传输与热阻
9.4.3 热分析
9.5 电力半导体器件的合理使用
9.5.1 可靠性
9.5.2 有效保护
9.5.3 降额使用
参考文献
第10章 电力半导体器件的数值
分析与仿真技术
10.1 数值分析方法
10.1.1 概述
10.1.2 电特性仿真
10.1.3 热特性仿真
10.2 MEDICI软件使用实例
10.2.1 使用方法
10.2.2 仿真实例
10.3 ISE软件使用实例
10.3.1 DIOS模块
10.3.2 MDRAW模块
10.3.3 DESSIS模块
10.4 ANSYS软件使用实例
10.4.1 软件介绍
10.4.2 分析实例
参考文献