所有分类
  • 所有分类
  • 精品课程
  • 课件资料
  • 标准资料
  • 资料手册
  • 图纸模型
  • 解说文案

国外电子信息精品著作(影印版):表面形貌的光学测量 英文版 里奇(RichardLeac

国外电子信息精品著作(影印版):表面形貌的光学测量 英文版  

作者:里奇(RichardLeach) 著  

出版时间:2012年版 

内容简介 

  《表面形貌的光学测量》介绍了表面形貌测量领域中一系列国际标准规范。复杂的准则都是基于新的测量技术而产生的。目前有很多用来测量表面形貌新的光学技术,每种方法都有其优点以及局限性。本书既适用于业界及学术研究领域的工程人员, 也适用于相关领域的研究生及高年级本科生。 

目录 

1 Introduction to Surface Texture Measurement Richard Leach 

1.1 Surface Texture Measurement 

1.2 Surface Profile and Areal Measurement 

1.3 Areal Surface Texture Measurement 

1.4 Surface Texture Standards and GPS 

1.4.1 Profile Standards 

1.4.2 Areal Specification Standards 

1.5 Instrument Types in the ISO 25178 Series 

1.5.1 The Stylus Instrument 

1.5.2 Scanning Probe Microscopes 

1.5.3 Scanning Electron Microscopes 

1.5.4 Optical Instrument Types 

1.6 Considerations When Choosing a Method 

Acknowledgements 

References 

2 Some Common Terms and Definitions Richard Leach 

2.1 Introduction 

2.2 The Principal Aberrations 

2.3 Objective Lenses 

2.4 Magniflcation and Numerical Aperture 

2.5 Spatial Resolution 

2.6 Optical Spot Size 

2.7 Field of View 

2.8 Depth of Field and Depth of Focus 

2.9 Interference Objectives 

Acknowledgements 

References 

3 Limitations of Optical 3D Sensors Gerd H?usler,Svenja Ettl 

3.1 Introduction:What Is This Chapter About? 

3.2 The Canonical Sensor 

3.3 Optically Rough and Smooth Surfaces 

3.4 Type Ⅰ Sensors:Triangulation 

3.5 Type Ⅱ and Type Ⅲ Sensors:Interferometry 

3.6 Type Ⅳ Sensors:Deflectometry 

3.7 Only Four Sensor Principles? 

3.8 Conclusion and Open Questions 

References 

4 Calibration of Optical Surface Topography Measuring Instruments Richard Leach,Claudiu Giusca 

4.1 Introduction to Calibration and Traceability 

4.2 Calibration of Surface Topography Measuring Instruments 

4.3 Can an Optical Instrument Be Calibrated? 

4.4 Types of Material Measure 

4.5 Calibration of Instrument Scales 

4.5.1 Noise 

4.5.2 Residual Flatness 

4.5.3 Amplification,Linearity and Squareness of the Scales 

4.5.4 Resolution 

4.6 Relationship between the Calibration,Adjustment and Measurement Uncertainty 

4.7 Summary 

Acknowledgements 

References 

5 Chromatic Confocal Microscopy Francois Blateyron 

5.1 Basic Theory 

5.1.1 Confocal Setting 

5.1.2 Axial Chromatic Dispersion 

5.1.3 Spectral Decoding 

5.1.4 Height Detection 

5.1.5 Metrological Characteristics 

5.1.5.1 Spot Size 

5.2 Instrumentation 

5.2.1 Lateral Scanning Configurations 

5.2.1.1 Profile Measurement 

5.2.1.2 Areal Measurement 

5.2.2 Optoelectronic Controller 

5.2.3 Optical Head 

5.2.4 Light Source 

5.2.5 Chromatic Objective 

5.2.6 Spectrometer 

5.2.7 Optical Fibre Cord 

5.3 Instrument Use and Good Practice 

5.3.1 Calibration 

5.3.1.1 Calibration of Dark Level 

5.3.1.2 Linearisation of the Response Curve 

5.3.1.3 Calibration of the Height Amplification Coefficient 

5.3.1.4 Calibration of the Lateral Ampliflcation Coefficient 

5.3.1.5 Calibration of the Hysteresis in Bi-directional Measurement 

5.3.2 Preparation for Measurement 

5.3.3 Pre-processing 

5.4 Limitations of the Technique 

5.4.1 Local Slopes 

5.4.2 Scanning Speed 

5.4.3 Light Intensity 

5.4.4 Non-measured Points 

5.4.5 Outliers 

5.4.6 Interference 

5.4.7 Ghost Foci 

5.5 Extensions of the Basic Principles 

5.5.1 Thickness Measurement 

5.5.2 Line and Field Sensors 

5.5.3 Absolute Reference 

5.6 Case Studies 

Acknowledgements 

References 

6 Point Autofocus Instruments Katsuhiro Miura,Atsuko Nose 

6.1 Basic Theory 

6.2 Instrumentation 

6.3 Instrument Use and Good Practice 

6.3.1 Comparison with Roughness Material Measures 

6.3.2 Three-Dimensional Measurement of Grinding Wheel Surface Topography 

6.4 Limitations of PAI 

6.4.1 Lateral Resolution 

6.4.2 Vertical Resolution 

6.4.3 The Maximum Acceptable Local Surface Slope 

6.5 Extensions of the Basic Principles 

6.6 Case Studies 

6.7 Conclusion 

References 

7 Focus Variationl Instruments Franz Helmli 

7.1 Introduction 

7.2 Basic Theorg 

7.2.1 How Does It Work? 

7.2.2 Acquisition of Image Data 

7.2.3 Measurement of 3D Information 

7.2.4 Post-processing 

7.2.5 Handling of Invalid Points 

7.3 Difference to Other Techniques 

7.3.1 Difference to Imaging Confocal Microscopy 

7.3.2 Difference to Point Auto Focusing Techniques 

7.4 Instrumentation 

7.4.1 Optical System 

7.4.2 CCD Sensor 

7.4.3 Light Source 

7.4.4 Microscope Obiective 

7.4.5 Driving Unit 

7.4.6 Practical Instrument Realisation 

7.5 Instrument Use and Good Practice 

7.6 Limitations of the Technology 

7.6.1 Translucent Materials 

7.6.2 Measurable Surfaces 

7.7 Extensions of the Basic Principles 

7.7.1 Repeatability Information 

7.7.2 High Radiometric Data Accluisition 

7.7.3 2D Alignment 

7.7.4 3D Alignment 

7.8 Case Studies 

7.8.1 Surface Texture Measurement of Worn Metal Parts 

7.8.2 Form Measurement of Complex Tap Parameters 

7.9 Conclusion 

Acknowledgements 

References 

8 Phase Shifting Interferometry Peter de Groot 

8.1 Conceot and Overview 

8.2 Principles of Surface Measurement Interferometry 

8.3 Phase Shifting Method 

8.4 Phase Unwrapping 

8.5 Phase Shifting Error Analysis 

8.6 Interferometer Design 

8.7 Lateral Resolution 

8.8 Focus 

8.9 Light Sources 

8.10 Calibration 

8.11 Examples of PSI Measurement 

References 

9 Coherence Scanning Interferometry Peter de Groot 

9.1 Conceot and Overview 

9.2 Terminology 

9.3 Typical Configurations of CSI 

9.4 Signal Formation 

9.5 Signal Processing 

9.6 Foundation Metrics and Height Calibration for CSI 

9.7 Dissimilar Materials 

9.8 Vibrational Sensitivity 

9.9 Transparent Films 

9.10 Examples 

9.11 Conclusion 

References 

10 Digital Holographic Microscopy Tristan Coolmb,Jonas Kühn 

10.1 Introduction 

10.2 Basic Theory 

10.2.1 Acquisition 

10.2.2 Reconstruction 

10.3 Instrumentation 

10.3.1 Light Source 

10.3.2 Digital Camera 

10.3.3 Microscope Obiective 

10.3.4 Optical Path Retarder 

10.4 Instrument Use and Good Practice 

10.4.1 Digital Focusing 

10.4.2 DHM Parameters 

10.4.3 Automatic Working Distance in Reflection DHM 

10.4.4 Sample Preoaration and Immersion Liquids 

10.5 Limitations of DHM 

10.5.1 Parasitic Interferences and Statistical Noise 

10.5.2 Height Measurement Range 

10.5.3 Sample Limitation 

10.6 Extensions of the Basic DHM Principles 

10.6.1 Multi-wavelength DHM 

10.6.1.1 Extended Measurement Range 

10.6.1.2 Mapping 

10.6.2 Stroboscopic Measurement 

10.6.3 DHM Reflectometry 

10.6.4 Infinite Focus 

10.6.5 Applications of DHM 

10.6.5.1 Topography and Defect Detection 

10.6.5.2 Roughness 

10.6.5.3 Micro-optics Characterization 

10.6.5.4 MEMS and MOEMS 

10.6.5.5 Semi-transparent Micro-structures 

10.7 Conclusions 

References 

11 Imaging Confocal Microscopy Roger Artigas 

11.1 Basic Theory 

11.1.1 Introduction to Imaging Confocal Microscopes 

11.1.2 Working Principle of an Imaging Confocal Microscope 

11.1.3 Metrological Algorithm 

11.1.4 Image Formation of a Confocal Microscope 

11.1.4.1 General Description of a Scanning Microscope 

11.1.4.2 Point Spread Function for the Limiting Case of an Infinitesimally Small Pinhole 

11.1.4.3 Pinhole Size Effect 

11.2 Instrumentation 

11.2.1 Types of Confocal Microscopes 

11.2.1.1 Laser Scanning Confocal Microscope Configuration 

11.2.1.2 Disc Scanning Confocal Microscope Configuration 

11.2.1.3 Programmable Array Scanning Confocal Microscope Configuration 

11.2.2 Objectives for Confocal Microscopy 

11.2.3 Vertical Scanning 

11.2.3.1 Motorised Stares with Optical Linear Encoders 

11.2.3.2 Piezoelectric Stages 

11.2.3.3 Comparison between Motorised and Piezoelectric Scanning Stages 

11.3 Instument Use and Good Practice 

11.3.1 LocatiOn of an Imaging Confocal Microscope 

11.3.2 Setting Up the Sample 

11.3.3 Setting the Right Scanning Parameters 

11.3.4 Simultaneous Detection of Confocal and Bright Field Images 

11.3.5 Sampling 

11.3.6 Low Magniflcation against Stitching 

11.4 Limitatioas of Imaging Confocal Microscopy 

11.4.1 Maximum Detectable Slope on Smooth Surfaces 

11.4.2 Noise and Resolution in Imaging Confocal Microscopes 

11.4.3 Errors in Imaring Confocal Microscopes 

11.4.3.1 Objective Flatness Error 

11.4.3.2 Calibration of the Flatness Error 

11.4.3.3 Measurements on Thin Transparent Materials 

11.4.4 Lateral Resolution 

11.5 Measurement of Thin and Thick Film with Imaging Confocal Microscopy 

11.5.1 Introduction 

11.5.2 Thick Films 

11.5.3 Thin Films 

11.6 Case Study:Roughness Prediction on Steel Plates 

References 

12 Light Scattering Methods Theodore V.Vorburger,Richard Silver,Rainer Brodmann,Boris Brodmann,J?rg Seewig 

12.1 Introduction 

12.2 Basic Theory 

12.3 Instrumentation and Case Studies 

12.3.1 Early Developments 

12.3.2 Recent Developments in Instrumentation for Mechanical Engineering Manufacture 

12.3.3 Recent Developments in Instrumentation for Semiconductor Manufacture(Optical Critical Dimension) 

12.4 Instrument Use and Good Practice 

12.4.1 SEMI MF 1048-1109(2009)Test Method for Measuring the Effective Surface Roughness of Optical Components by Total Integrated Scattering 

12.4.2 SEMI ME 1392-1109(2009)Guide for Angle-Resolved Optical Scatter Measurements on Specular or Diffuse Surfaces 

12.4.3 ISO10110-8:2010 Optics and Photonics-Preparation of Drawings for Optical Elements and Systems-Part 8:Surface Texture 

12.4.4 Standards for Gloss Measurement 

12.4.5 VDA Guideline 2009,Geometrische Produktspezifikation Oberfl?chenbeschaffenheit Winkelaufgel?ste Streulichtmesstech-nik Definition,Kenngr?βen und Anwendung(Light Scattering Measurement Technique) 

12.5 Limitations of the Technique 

12.6 Extensions of the Basic Principles 

Acknowledgements 

References 

Index 

资源下载
下载价格10 金币
VIP免费
0
没有账号?注册  忘记密码?

社交账号快速登录