国外电子信息精品著作(影印版):表面形貌的光学测量 英文版
作者:里奇(RichardLeach) 著
出版时间:2012年版
内容简介
《表面形貌的光学测量》介绍了表面形貌测量领域中一系列国际标准规范。复杂的准则都是基于新的测量技术而产生的。目前有很多用来测量表面形貌新的光学技术,每种方法都有其优点以及局限性。本书既适用于业界及学术研究领域的工程人员, 也适用于相关领域的研究生及高年级本科生。
目录
1 Introduction to Surface Texture Measurement Richard Leach
1.1 Surface Texture Measurement
1.2 Surface Profile and Areal Measurement
1.3 Areal Surface Texture Measurement
1.4 Surface Texture Standards and GPS
1.4.1 Profile Standards
1.4.2 Areal Specification Standards
1.5 Instrument Types in the ISO 25178 Series
1.5.1 The Stylus Instrument
1.5.2 Scanning Probe Microscopes
1.5.3 Scanning Electron Microscopes
1.5.4 Optical Instrument Types
1.6 Considerations When Choosing a Method
Acknowledgements
References
2 Some Common Terms and Definitions Richard Leach
2.1 Introduction
2.2 The Principal Aberrations
2.3 Objective Lenses
2.4 Magniflcation and Numerical Aperture
2.5 Spatial Resolution
2.6 Optical Spot Size
2.7 Field of View
2.8 Depth of Field and Depth of Focus
2.9 Interference Objectives
Acknowledgements
References
3 Limitations of Optical 3D Sensors Gerd H?usler,Svenja Ettl
3.1 Introduction:What Is This Chapter About?
3.2 The Canonical Sensor
3.3 Optically Rough and Smooth Surfaces
3.4 Type Ⅰ Sensors:Triangulation
3.5 Type Ⅱ and Type Ⅲ Sensors:Interferometry
3.6 Type Ⅳ Sensors:Deflectometry
3.7 Only Four Sensor Principles?
3.8 Conclusion and Open Questions
References
4 Calibration of Optical Surface Topography Measuring Instruments Richard Leach,Claudiu Giusca
4.1 Introduction to Calibration and Traceability
4.2 Calibration of Surface Topography Measuring Instruments
4.3 Can an Optical Instrument Be Calibrated?
4.4 Types of Material Measure
4.5 Calibration of Instrument Scales
4.5.1 Noise
4.5.2 Residual Flatness
4.5.3 Amplification,Linearity and Squareness of the Scales
4.5.4 Resolution
4.6 Relationship between the Calibration,Adjustment and Measurement Uncertainty
4.7 Summary
Acknowledgements
References
5 Chromatic Confocal Microscopy Francois Blateyron
5.1 Basic Theory
5.1.1 Confocal Setting
5.1.2 Axial Chromatic Dispersion
5.1.3 Spectral Decoding
5.1.4 Height Detection
5.1.5 Metrological Characteristics
5.1.5.1 Spot Size
5.2 Instrumentation
5.2.1 Lateral Scanning Configurations
5.2.1.1 Profile Measurement
5.2.1.2 Areal Measurement
5.2.2 Optoelectronic Controller
5.2.3 Optical Head
5.2.4 Light Source
5.2.5 Chromatic Objective
5.2.6 Spectrometer
5.2.7 Optical Fibre Cord
5.3 Instrument Use and Good Practice
5.3.1 Calibration
5.3.1.1 Calibration of Dark Level
5.3.1.2 Linearisation of the Response Curve
5.3.1.3 Calibration of the Height Amplification Coefficient
5.3.1.4 Calibration of the Lateral Ampliflcation Coefficient
5.3.1.5 Calibration of the Hysteresis in Bi-directional Measurement
5.3.2 Preparation for Measurement
5.3.3 Pre-processing
5.4 Limitations of the Technique
5.4.1 Local Slopes
5.4.2 Scanning Speed
5.4.3 Light Intensity
5.4.4 Non-measured Points
5.4.5 Outliers
5.4.6 Interference
5.4.7 Ghost Foci
5.5 Extensions of the Basic Principles
5.5.1 Thickness Measurement
5.5.2 Line and Field Sensors
5.5.3 Absolute Reference
5.6 Case Studies
Acknowledgements
References
6 Point Autofocus Instruments Katsuhiro Miura,Atsuko Nose
6.1 Basic Theory
6.2 Instrumentation
6.3 Instrument Use and Good Practice
6.3.1 Comparison with Roughness Material Measures
6.3.2 Three-Dimensional Measurement of Grinding Wheel Surface Topography
6.4 Limitations of PAI
6.4.1 Lateral Resolution
6.4.2 Vertical Resolution
6.4.3 The Maximum Acceptable Local Surface Slope
6.5 Extensions of the Basic Principles
6.6 Case Studies
6.7 Conclusion
References
7 Focus Variationl Instruments Franz Helmli
7.1 Introduction
7.2 Basic Theorg
7.2.1 How Does It Work?
7.2.2 Acquisition of Image Data
7.2.3 Measurement of 3D Information
7.2.4 Post-processing
7.2.5 Handling of Invalid Points
7.3 Difference to Other Techniques
7.3.1 Difference to Imaging Confocal Microscopy
7.3.2 Difference to Point Auto Focusing Techniques
7.4 Instrumentation
7.4.1 Optical System
7.4.2 CCD Sensor
7.4.3 Light Source
7.4.4 Microscope Obiective
7.4.5 Driving Unit
7.4.6 Practical Instrument Realisation
7.5 Instrument Use and Good Practice
7.6 Limitations of the Technology
7.6.1 Translucent Materials
7.6.2 Measurable Surfaces
7.7 Extensions of the Basic Principles
7.7.1 Repeatability Information
7.7.2 High Radiometric Data Accluisition
7.7.3 2D Alignment
7.7.4 3D Alignment
7.8 Case Studies
7.8.1 Surface Texture Measurement of Worn Metal Parts
7.8.2 Form Measurement of Complex Tap Parameters
7.9 Conclusion
Acknowledgements
References
8 Phase Shifting Interferometry Peter de Groot
8.1 Conceot and Overview
8.2 Principles of Surface Measurement Interferometry
8.3 Phase Shifting Method
8.4 Phase Unwrapping
8.5 Phase Shifting Error Analysis
8.6 Interferometer Design
8.7 Lateral Resolution
8.8 Focus
8.9 Light Sources
8.10 Calibration
8.11 Examples of PSI Measurement
References
9 Coherence Scanning Interferometry Peter de Groot
9.1 Conceot and Overview
9.2 Terminology
9.3 Typical Configurations of CSI
9.4 Signal Formation
9.5 Signal Processing
9.6 Foundation Metrics and Height Calibration for CSI
9.7 Dissimilar Materials
9.8 Vibrational Sensitivity
9.9 Transparent Films
9.10 Examples
9.11 Conclusion
References
10 Digital Holographic Microscopy Tristan Coolmb,Jonas Kühn
10.1 Introduction
10.2 Basic Theory
10.2.1 Acquisition
10.2.2 Reconstruction
10.3 Instrumentation
10.3.1 Light Source
10.3.2 Digital Camera
10.3.3 Microscope Obiective
10.3.4 Optical Path Retarder
10.4 Instrument Use and Good Practice
10.4.1 Digital Focusing
10.4.2 DHM Parameters
10.4.3 Automatic Working Distance in Reflection DHM
10.4.4 Sample Preoaration and Immersion Liquids
10.5 Limitations of DHM
10.5.1 Parasitic Interferences and Statistical Noise
10.5.2 Height Measurement Range
10.5.3 Sample Limitation
10.6 Extensions of the Basic DHM Principles
10.6.1 Multi-wavelength DHM
10.6.1.1 Extended Measurement Range
10.6.1.2 Mapping
10.6.2 Stroboscopic Measurement
10.6.3 DHM Reflectometry
10.6.4 Infinite Focus
10.6.5 Applications of DHM
10.6.5.1 Topography and Defect Detection
10.6.5.2 Roughness
10.6.5.3 Micro-optics Characterization
10.6.5.4 MEMS and MOEMS
10.6.5.5 Semi-transparent Micro-structures
10.7 Conclusions
References
11 Imaging Confocal Microscopy Roger Artigas
11.1 Basic Theory
11.1.1 Introduction to Imaging Confocal Microscopes
11.1.2 Working Principle of an Imaging Confocal Microscope
11.1.3 Metrological Algorithm
11.1.4 Image Formation of a Confocal Microscope
11.1.4.1 General Description of a Scanning Microscope
11.1.4.2 Point Spread Function for the Limiting Case of an Infinitesimally Small Pinhole
11.1.4.3 Pinhole Size Effect
11.2 Instrumentation
11.2.1 Types of Confocal Microscopes
11.2.1.1 Laser Scanning Confocal Microscope Configuration
11.2.1.2 Disc Scanning Confocal Microscope Configuration
11.2.1.3 Programmable Array Scanning Confocal Microscope Configuration
11.2.2 Objectives for Confocal Microscopy
11.2.3 Vertical Scanning
11.2.3.1 Motorised Stares with Optical Linear Encoders
11.2.3.2 Piezoelectric Stages
11.2.3.3 Comparison between Motorised and Piezoelectric Scanning Stages
11.3 Instument Use and Good Practice
11.3.1 LocatiOn of an Imaging Confocal Microscope
11.3.2 Setting Up the Sample
11.3.3 Setting the Right Scanning Parameters
11.3.4 Simultaneous Detection of Confocal and Bright Field Images
11.3.5 Sampling
11.3.6 Low Magniflcation against Stitching
11.4 Limitatioas of Imaging Confocal Microscopy
11.4.1 Maximum Detectable Slope on Smooth Surfaces
11.4.2 Noise and Resolution in Imaging Confocal Microscopes
11.4.3 Errors in Imaring Confocal Microscopes
11.4.3.1 Objective Flatness Error
11.4.3.2 Calibration of the Flatness Error
11.4.3.3 Measurements on Thin Transparent Materials
11.4.4 Lateral Resolution
11.5 Measurement of Thin and Thick Film with Imaging Confocal Microscopy
11.5.1 Introduction
11.5.2 Thick Films
11.5.3 Thin Films
11.6 Case Study:Roughness Prediction on Steel Plates
References
12 Light Scattering Methods Theodore V.Vorburger,Richard Silver,Rainer Brodmann,Boris Brodmann,J?rg Seewig
12.1 Introduction
12.2 Basic Theory
12.3 Instrumentation and Case Studies
12.3.1 Early Developments
12.3.2 Recent Developments in Instrumentation for Mechanical Engineering Manufacture
12.3.3 Recent Developments in Instrumentation for Semiconductor Manufacture(Optical Critical Dimension)
12.4 Instrument Use and Good Practice
12.4.1 SEMI MF 1048-1109(2009)Test Method for Measuring the Effective Surface Roughness of Optical Components by Total Integrated Scattering
12.4.2 SEMI ME 1392-1109(2009)Guide for Angle-Resolved Optical Scatter Measurements on Specular or Diffuse Surfaces
12.4.3 ISO10110-8:2010 Optics and Photonics-Preparation of Drawings for Optical Elements and Systems-Part 8:Surface Texture
12.4.4 Standards for Gloss Measurement
12.4.5 VDA Guideline 2009,Geometrische Produktspezifikation Oberfl?chenbeschaffenheit Winkelaufgel?ste Streulichtmesstech-nik Definition,Kenngr?βen und Anwendung(Light Scattering Measurement Technique)
12.5 Limitations of the Technique
12.6 Extensions of the Basic Principles
Acknowledgements
References
Index