所有分类
  • 所有分类
  • 在线课堂
  • 精品课程
  • 课件资料
  • 标准资料
  • 资料手册
  • 图纸模型
文档家VIP会员升级

国外电子信息精品著作 熵与信息论 英文影印版 [(美)格雷 编著] 2012年版

国外电子信息精品著作 熵与信息论 英文影印版  

作者:(美)格雷 编著 

出版时间:2012年版 

内容简介 

  由格雷编写的这本《熵与信息论(影印版)》保留了第一版清晰、简明的写作风格。信息论的内容主要包括熵、数据压缩、信道容量、率失真、网络信息论以及假设检验等。《熵与信息论(影印版)》旨在为读者在理论研究和应用等方面打下坚实的基础。每章的结尾配有习题集、要点总结以及主要内容论点的回顾。《熵与信息论(影印版)》是电子工程、统计学以及通信方向高年级本科生和研究生学习信息论基础课程的理想参考书。 

目录 

Preface 

Introduction 

1 Information Sources 

1.1 Probability Spaces and Random Variables 

1.2 Random Processes and Dynamical Systems 

1.3 Distributions 

1.4 Standard Alphabets 

1.5 Expectation 

1.6 Asymptotic Mean Stationarity 

1.7 Ergodic Properties 

2 Pair Processes: Channels, Codes, and Couplings 

2.1 Pair Processes 

2.2 Channels 

2.3 Stationariw Properties of Channels 

2.4 Extremes: Noiseless and Completely Random Channels 

2.5 Deterministic Channels and Sequence Coders 

2.6 Stationary and Sliding-Block Codes 

2.7 Block Codes 

2.8 Random Punctuation Sequences 

2.9 Memoryless Channels 

2.10 Finite-Memory Channels 

2.11 Output Mixing Channels 

2.12 Block independent Channels 

2.13 Conditionally Block independent Channels 

2.14 Stationarizing Block Independent Channels 

2.15 Primitive Channels 

2.16 Additive Noise Channels 

2.17 Markov Channels 

2.18 Finite-State Channels and Codes 

2.19 Cascade Channels 

2.20 Commuication Systems 

2.21 Couplings 

2.22 Block to Sliding-Block: The Rohiin-Kakutani Theorem 

3 Entropy 

3.1 Entropy and Entropy Rate 

3.2 Divergence Inequality and Relative Entropy 

3.3 Basic Properties of Entropy 

3.4 Entropy Rate 

3.5 Relative Entropy Rate 

3.6 Conditional Entropy and Mutual Information 

3.7 Entropy Rate Revisited 

3.8 Markov Approximations 

3.9 Relative Entropy Densities 

4 The Entropy Ergodic Theorem 

4.1 History 

4.2 Stationary Ergodic Sources 

4.3 Stationary Nonergodic Sources 

4.4 AMS Sources 

4.5 The Asymptotic Equipartition Property 

5 Distortion and Approximation 

5.1 Distortion Measures 

5.2 Fidelity Criteria 

5.3 Average Limiting Distortion 

5.4 Communications Systems Performance 

5.5 Optima] Performance 

5.6 Code Approximation 

5.7 Approximating Random Vectors and Processes 

5.8 The Monge/Kantorovich/Vasershtein Distance 

5.9 Variation and Distribution Distance 

5.10 Coupling Discrete Spaces with the Hamming Distance 

5.11 Process Distance and Approximation 

5.12 Source Approximation and Codes 

5.13 d-bar Continuous Channels 

6 Distortion and Entropy 

6.1 The Fano Inequality 

6.2 Code Approximation and Entropy Rate 

6.3 Pinsker\’s and Matron\’s Inequalities 

6.4 Entropy and Isomorphism 

6.5 Almost Lossless Source Coding 

6.6 Asymptotically Optimal Almost Lossless Codes 

6.7 Modeling and Simulation 

Relative Entropy 

7.1 Divergence 

7.2 Conditional Relative Entropy 

7.3 Limiting Entropy Densities 

7.4 Information for General Alphabets 

7.5 Convergence Results 

8 Information Rates 

8.1 Information Rates for Finite Alphabets 

8.2 Information Rates for General Alphabets 

8.3 A Mean Ergodic Theorem for Densities 

8.4 Information Rates of Stationary Processes 

8.5 The Data Processing Theorem 

8.6 Memoryless Channels and Sources 

9 Distortion and Information 

9.1 The Shannon Distortion-Rate Function 

9.2 Basic Properties 

9.3 Process Definitions of the Distortion-Rate Function 

9.4 The Distortion-Rate Function as a Lower Bound 

9.5 Evaluating the Rate-Distortion Function 

10 Relative Entropy Rates 

10.1 Relative Entropy Densities and Rates 

10.2 Markov Dominating Measures 

10.3 Stationary Processes 

10.4 Mean Ergodic Theorems 

11 Ergodic Theorems for Densities 

11.1 Stationary Ergodic Sources 

11.2 Stationary Nonergodic Sources 

11.3 AMS Sources 

11.4 Ergodic Theorems for Information Densities 

12 Source Coding Theorems 

12.1 Source Coding and Channel Coding 

12.2 Block Source Codes for AMS Sources 

12.3 Block Source Code Mismatch 

12.4 Block Coding Stationary Sources 

12.5 Block Cod|rig AMS Ergodic Sources 

12.6 Subadditive FideliW Criteria 

12.7 Asynchronous Block Codes 

12.8 Sliding-Block Source Codes 

12.9 A Geometric Interpretation 

13 Properties of Good Source Codes 

13.1 Optimal and Asymptotically Optimal Codes 

13.2 Block Codes 

13.3 Sliding-Block Codes 

14 Coding for Noisy Channels 

14.1 Noisy Channels 

14.2 Feinstein\’s Lemma 

14.3 Feinstein\’s Theorem 

14.4 Channel Capacity 

14.5 Robust Block Codes 

14.6 Block Coding Theorems for Noisy Channels 

14.7 Joint Source and Channel Block Codes 

14.8 Synchronizing Block Channel Codes 

14.9 Sliding-block Source and Channel Coding 

References 

Index 

资源下载
资源下载
0
文档家VIP会员升级
没有账号?注册  忘记密码?

社交账号快速登录

微信扫一扫关注
扫码关注后会自动登录