所有分类
  • 所有分类
  • 精品课程
  • 课件资料
  • 标准资料
  • 资料手册
  • 图纸模型
  • 解说文案

描述岩土工程模型不确定性特征的贝叶斯方法(英文版)

描述岩土工程模型不确定性特征的贝叶斯方法(英文版) 
出版时间:2011年版 
内容简介 
  As any model is only an abstraction of the real world, model uncertainty always exists. Ingeotechnical engineering, the model uncertainty could be large. Lack of knowledge about modeluncertainty may lead to unrealistic predictions. When back analysis from observed performances,model uncertainty is often mixed with parameter uncertainty and observational uncertainty. Hence itis generally difficult to isolate and characterize model uncertainty. This book introduces the state-of-the-art theories and methodologies for geotechnical model uncertainty characterization based on theBayesian theory, including both rigorous solution and approximate but practical solutions, where theeffects of parameter uncertainty and observational uncertainty on model uncertainty characterizationare appropriately addressed. The theories and methodologies are illustrated in detail with variousgeotechnical problems. The book will be of general interest to readers in the profession andparticularly useful for those specializing in geotechnical inverse analysis and geotechnical reliability. 
目录 
Preface 
Chapter 1 Introduction 
1.1 Background 
1.2 Objective and Scope 
1.3 Organization of the Book 
Chapter 2 Literature Review 
2.1 Within-System Characterization 
2.1.1 Least Square Method 
2.1.2 Maximum Likelihood Method 
2.1.3 Bayesian Method 
2.1.4 Extended Bayesian Method 
2.1.5 Model Comparison and Multi-model Inference 
2.2 Cross System Characterization 
2.3 Bayesian Method and Computational Techniques 
2.3.1 Maximum Posterior Density Method 
2.3.2 First order Second moment Bayesian Method (FSBM) 
2.3.3 Laplace Method 
2.3.4 System Identification Method 
2.3.5 Sampling Based Methods 
2.4 Summary 
Chapter 3 Bayesian Framework for Characterizing Model Uncertainty 
3.1 Parameter, Model, and Observation Uncertainties 
3.2 Bayesian Estimation of Model Uncertainty 
3.2.1 Extension to Multiplicative Model Correction Factor 
3.2.2 Extension to Censored Observed Data 
3.2.3 Extension to Model Correction Functions 
3.3 Characteristics of Cross System Model Uncertainty Characterization 
3.3.1 Role of Prior Information 
3.3.2 Interpretation of Determined Model Uncertainty 
3.4 Assignment of Prior Uncertainties 
3.4.1 General Guidelines for Determining f(xi) 
3.4.2 Prior Distribution for Model Uncertainty Parameters 
3.5 Decision Involved in Model Uncertainty Characterization 
3.5.1 Selection of Model Correction Factors 
3.5.2 Use of Model Correction Function 
3.6 Prediction of System Responses 
3.7 Possible Solutions to the Bayesian Framework 
3.8 Summary 
Chapter 4 Simplified Bayesian Framework for Characterizing Model Uncertainty 
4.1 Introduction 
4.2 Approximate Formulation for Characterizing Model Uncertainty 
4.3 Discussion of Prior Distributions on Model Uncertainty Parameters 
4.4 Characterizing Model Uncertainty based on the Approximate Formulation 
4.4.1 Maximum Posterior Density Method 
4.4.2 Grid Calculation Method 
4.4.3 MCMC Simulation 
4.5 Comparison of Model Uncertainty Factors 
4.5.1 Spreadsheet Method 
4.5.2 Grid Calculation Method 
4.6 Approximate Prediction of System Response 
4.7 Extension to Model Correction Functions 
4.8 An Illustration Example 
4.8.1 Background 
4.8.2 Prior Knowledge in Model Uncertainty Parameters 
4.8.3 Test Uncertainty 
4.8.4 Calculation of 霨(x) and 驡(x) 
4.8.5 Spreadsheet Implementation of the Maximum Posterior Method 
4.8.6 Comparison of Methods for Model Uncertainty Characterization 
4.9 Summary 
Chapter 5 Efficient Markov Chain for Identifying Geoteehnieal Model Uncertainty 
5.1 Introduction 
5.2 Study of Efficient Markov Chain for Characterizing Model Uncertainty 
5.2.1 Markov Chains under Investigation 
5.2.2 Comparison of Markov Chains 
5.3 Hybrid Markov Chain for Model Uncertainty Characterization in the Original Bayesian Framework 
5.3.1 Structure of the Hybrid Markov Chain 
5.3.2 Determination of the Jumping Functions 
5.3.3 Check of Convergence 
5.4 Application to the Slope Stability Model Example 
5.4.1 Performance of the Markov Chain 
5.4.2 Check of Convergence 
5.4.3 Posterior Distributions 
5.4.4 Accuracy of Approximate Methods 
5.5 Extension to Model Correction Function Calibration 
5.6 Summary 
Chapter 6 Probabilistic Back-Analysis of Slope Failure 
6.1 Introduction 
6.2 Further Study on Model Uncertainty of Limit Equilibrium Methods 
6.2.1 Effect of Test Uncertainty 
6.2.2 Effect of Quality of Test Data 
6.2.3 Effect of Amount of Test Data 
6.3 Back Analysis of Slope Failure with Unknown Model Uncertainty 
6.3.1 Bayesian Formulation 
6.3.2 MCMC Simulation 
6.3.3 Response Surface Approximation 
6.3.4 Illustrative Example 
6.4 Back Analysis of Slope Failure with Known Model Uncertainty 
6.4.1 Theory of Back Analysis with Known Model Uncertainty 
6.4.2 Step-by-step Implementation 
6.4.3 Reanalysis of Shek Kip Mei Landslide 
6.5 Summary 
Chapter 7 Reliability Based Design of Pile Foundation 
7.1 Introduction 
7.2 Problem Description 
7.3 Model Uncertainty Characterization 
7.3.1 Model Uncertainty Characterization Using Approximate Methods 
7.3.2 Model Uncertainty Characterization in the Original Bayesian Framework 
7.3.3 Comparison of Results 
7.3.4 Effect of Data Censoring on Model Uncertainty Characterization 
7.3.5 Role of Model Uncertainty in Pile Capacity Prediction 
7.4 Comparison of Probabilistic Models for Model Uncertainty Characterization 
7.4.1 Use of Additive Model Correction Factor 
7.4.2 Use of Model Correction Functions 
7.5 Reliability Based Design of Pile Foundations 
7.5.1 Design Point Method 
7.5.2 Application to Pile Capacity Model 
7.5.3 Adjustment in Consideration of Structural Codes 
7.5.4 Regression Analyses of Partial Factors 
7.6 Reliability Based Design with Effective Stress Approach 
7.7 Comparison of the SPT Method and Effective Stress Method 
7.8 Summary 
Chapter 8 Characterizing the Model Uncertainty of a Liquefaction Model 
8.1 Introduction 
8.2 Problem Description 
8.2.1 Liquefaction Model under Investigation 
8.2.2 Calibration Database 
8.2.3 Parameter Uncertainty 
8.3 Determination of Model Uncertainty 
8.3.1 Bayesian Formulation 
8.3.2 Choice-based Sampling Bias 
8.3.3 Prior Probabilistic Analysis of Liquefaction Data 
8.3.4 Calibration Results 
8.3.5 Role of Model Uncertainty in Liquefaction Potential Evaluation 
8.3.6 Determination of Target Factor of Safety 
8.4 Summary 
Appendix A 
Appendix B 
References

资源下载
下载价格10 金币
VIP免费
0
没有账号?注册  忘记密码?

社交账号快速登录