所有分类
  • 所有分类
  • 在线课堂
  • 精品课程
  • 课件资料
  • 标准资料
  • 资料手册
  • 图纸模型
文档家VIP会员升级

经典数学物理中的偏微分方程 英文版 巴勒(Lev Rubinstein)著 2000年版

经典数学物理中的偏微分方程 英文版  

作者:巴勒(Lev Rubinstein)著  

出版时间:2000年版 

内容简介 

  The unique characteristic of this book is that it considers the theory of partial differential equations in mathematical physics as the language of continuous processes, that is to say, as an interdisciplinary science that treats the hierarchy of mathematical phenomena as reflections of their physical counterparts. Special attention is drawn to tracing the development of these mathematical phenomena in different natural sciences, with examples drawn from continuum mechanics, electrodynamics, transport phenomena, thermodynamics, and chemical kinetics. At the same time, the authors trace the interrelation between the different types of problems elliptic, parabolic, and hyperbolic – as the mathematical counterparts of stationary and evolutionary processes. This interrelation is traced through study of the asymptotics of the solutions of the respective initial boundaryvalue problems both with respect to time and the governing parameters of the problem. This combination of mathematical comprehensiveness and natural scientific motivation represents a step forward in the presentation of the classical theory of PDEs, one that will be appreciated by both graduate students and researchers alike.本书为英文版。 

目录 

Preface 

Chapter1. 

Introduction 

1.Mathematicalphysics 

2.Basicconceptsofcontinuum 

mechanics 

3.Elementsof 

electrostatics 

4.Elementsof 

electrodynamics 

5.Elementsofchemical 

kinetics 

6.Elementsofequilibrium 

thermodynamics 

7.Integrallawsofconservation 

ofextensiveparameters 

8.Elementsofthermodynamics 

ofirreversibleprocesses 

Problems 

Chapter2.Typical 

equationsofmathematical 

physics.Boundary 

conditions 

1.Lawsofconservationand 

continuity.Three 

prototypicsecond-order 

equationsofmathematical 

physics 

2.Equationsofcontinuity. 

Convectiveanddiffusion 

fluxinnonelectrolyte 

solutionsinpresenceof 

chemicalreactions.Fick\’s 

equationofdiffusionin 

binarysolutions.Diffusion 

ofelectrolytes. 

Nernst-Planck 

equation 

3.Equationofmotionof 

continuousmedium 

4.Equationofheat 

conductionincontinuous 

media.Heatconductionin 

movinghomogeneous 

compressiblefluid 

5.Potentialmotionofinviscid 

incompressibleliquid. 

Equations\’ofvibrationsof 

elasticbodyandofslightly 

compressibleinviscid 

liquid 

6.Chainofspringsoscillating 

inmediumwithfriction. 

Waveequation 

7.Maxwell\’sequationsof 

electrodynamics 

8.Theoryofpercolationof 

multicomponent 

liquids 

9.Brownianmotion. 

Langevin\’sequationand 

hyperbolicdiffusion 

equation 

10.Boundaryandinitial 

conditions 

11.Examplesoftypicalfree 

boundary-value 

problems 

12.Well-posednessin 

Hadamard\’ssense. 

Examplesofill-posed 

problems 

13.Terminology.Concluding 

remark.Notation 

Problems 

Chapter3.Cauchy 

problemforfirst-order 

partialdifferential 

equations 

1.LocalCauchyproblemfor 

quasilinearequationwith 

twoindependent 

variables 

2.LocalCauchyproblemfor 

nonlinearfirst-orderpartial 

differentialequation 

3.GlobalCauchyproblemfor 

quasilinearpartial 

differentialfirst-order 

equationwithtwo 

independentvariables.Need 

forbroaderclassof 

generalized(discontinuous) 

solutions 

4.Necessaryconditionsof 

discontinuity.Problemof 

decayofarbitrary 

discontinuity.Gelfand\’s 

heuristictheory 

Problems 

Chapter4.Classificationof 

second-orderpartial 

differentialequationswith 

linearprincipalpart. 

Elementsofthetheoryof 

characteristics 

1.Classificationof 

second-orderpartial 

differentialequations 

2.Reductionofsecond-order 

equationtocanonical 

form 

3.Canonicalformoflinear 

partialdifferentialequations 

withconstant 

coefficients 

4.Cauchyproblemforpartial 

differentialequationswith 

linearprincipalpart. 

Classificationof 

equations 

5.Cauchyproblemforsystem 

oftwoquasilinearfirst-order 

partialdifferentialequations 

withtwoindependent 

variables;conceptof 

characteristics 

6.Characteristicsascurvesof 

weakdiscontinuityofsecond 

orhigherorder 

7.Riemann\’sformula. 

Characteristicsascurvesof 

weakdiscontinuityoffirst 

orderorascurvesofstrong 

discontinuity 

Problems 

Chapter5.Cauchyand 

mixedproblemsforthe 

waveequationinR1. 

Methodoftraveling 

waves 

1.Smallvibrationsofinfinite 

string.Methodoftraveling 

waves 

2.Smallvibrationsof 

semi-infiniteandfinite 

stringswithrigidlyfixedor 

freeends.Methodof 

prolongation 

3.Generalizedsolutionof 

problemofvibrationof 

loadedstringwith 

nonhomogeneousboundary 

conditions 

Problems 

Chapter6.Cauchyand 

Goursatproblemsfora 

second-orderlinear 

hyperbolicequationwith 

twoindependentvariables. 

Riemann\’smethod 

1.Riemann\’smethod 

2.Goursatproblem.Existence 

anduniquenessof 

Riemann\’sfunction 

3.Dynamicsofsorptionfrom 

solutionpercolatingthrough 

layerofporousadsorbent. 

Riemannfunctionfora 

linearhyperbolicequation 

withconstant 

coefficients 

Problems 

Chapter7.Cauchy 

problemfora2-dimensional 

waveequation.The 

Volterra-D\’Adhemar 

solution 

1.Characteristicmanifoldof 

second-orderlinear 

hyperbolicequationwithn 

independentvariables 

2.Cauchyproblemforthe 

2-dimensionalwave 

equation. 

Volterra-D\’Adhemar 

solution 

Problems 

Chapter8.Cauchy 

problemforthewave 

equationinRs.Methodsof 

veraginganddescent. 

Huygens\’sprinciple 

1.Methodofaveraging 

2.Methodofdescent 

3.Huygens\’sprinciple 

Problems 

Chapter9.Basicproperties 

ofharmonicfunctions 

1.Convex,linear,andconcave 

functionsinRi 

2.Classesoftwicecontinuously 

differentiablesuperharmonic, 

harmonic,andsubharmonic 

functionsin 

multidimensional 

regions 

3.Hopf\’slemmaandstrong 

maximumprinciple 

4.Green\’sformulas.Fluxof 

harmonicfunctionthrough 

closedsurface.Uniqueness 

theorems 

5.Integralidentity.Mean 

valuetheorem.Inversemean 

valuetheorem 

Problems 

Chapter10.Green\’s 

functions 

1.Definitions.Main 

properties 

2.Sommerfeld\’smethodof 

electrostaticimages(method 

ofsuperpositionofsources 

andsinks) 

3.Poissonintegral 

Problems 

Chapter11.Sequencesof 

harmonicfunctions. 

Perron\’stheorem.Schwarz 

alternatingmethod 

1.Harnack\’stheorems 

2.Completeclassesof 

(continuous)superharmonic 

andsubharm0nic 

functions 

3.BasicPerrontheorem 

4.Existencetheoremfor 

Dirichletproblem. 

Barriers. 

5.Schwarzalternating 

method 

Problems 

Chapter12.Outer 

boundary-valueproblems. 

Elementsofpotential 

theory 

1.Isolatedsingularpointsof 

harmonicfunctions 

2.Regularityofharmonic 

functionsatinfinity 

3.Extensionofthe 

fundamentalidentityto 

unboundedregions. 

Liouville\’stheorem 

4.Electrostaticpotentials 

5.Integralswithpolar 

singularities 

6.Propertiesofelectrostatic 

volumepotential 

7.Propertiesofelectrostatic 

potentialsofdoubleand 

singlelayers 

8.DirichletandNeumann 

boundary-valueproblems. 

Reductiontointegral 

equations.Existence 

theorems 

Problems 

Chapter13.Cauchy 

problemfor 

heat-conduction 

equation 

1.Fundamentalsolutionof 

Fourierequation.Heaviside 

unitfunctionandDirac5 

function 

2.SolutionofCauchyproblem 

for1-dimensionalFourier 

equation.Poisson 

integral 

3.Momentsofsolutionof 

Cauchyproblem. 

Asymptoticbehaviorofthe 

Poissonintegralas 

tToo 

4.Prigogineprinciple, 

Glansdorf-Prigogine 

criterion,andsolutionof 

Cauchyproblemfor 

heat-conduction 

equation 

5.Fundamentalsolutionof 

multidimensional 

heat-conduction 

equation 

Problems 

Chapter14.Maximum 

principleforparabolic 

equations 

1.Notation 

2.Weakmaximum 

principle 

3.Nirenberg\’sstrongmaximum 

principle 

4.Vyborny-Friedmananalog 

ofHopf\’slemma 

5.Uniquenesstheorems. 

Tichonov\’scomparison 

theorem 

6.Remarksontime 

irreversibilityinparabolic 

equations 

Problems 

Chapter15.Applicationof 

Green\’sformulas. 

Fundamentalidentity. 

Green\’sfunctionsfor 

Fourierequation 

1.Fundamentalidentity 

2.ApplicationoffirstGreen\’s 

formulaanduniqueness 

theorems 

3.Green\’sfunctions 

4.Relationshipbetween 

Green\’sfunctionsof 

DirichletprobleminR3, 

correspondingtoLaplace 

andFourieroperators 

(Tichonov\’stheorem) 

5.ExamplesofGreen\’s 

functions 

Problems 

Chapter16.Heat 

potentials 

1.Volumeheatpotential 

2.Heatpotentialsofdouble 

andsinglelayers 

Problems 

Chapter17.Volterra 

integralequationsandtheir 

applicationtosolutionof 

boundary-valueproblemsin 

heat-conductiontheory 

1.Reductionoffirst,second, 

andthirdboundary-value 

problemsforFourier 

equationtoVolterraintegral 

equations.Existence 

theorems 

2.Asymptoticbehaviorof 

solutionoffirst 

boundary-valueproblemand 

respectiveintegral 

equations 

3.Solutionofquasilinear 

Cauchyproblem 

4.One-dimensionalone-phase 

Stefanproblemwith 

ablation 

5.Determinationof 

temperatureofhalf-space 

z>0radiatingheat 

accordingto 

Stefan-Boltzmannlaw 

Problems 

Chapter18.Sequencesof 

parabolicfunctions 

1.Parabolicanalogsof 

Harnack\’stheorems 

2.Spaceofcontinuoussuper- 

andsubparabolic 

functions 

3.Perron-Petrovsky\’stheorem. 

Parabolicbarriers 

4.Caseofcylindricalregion. 

Tichonov\’stheorem. 

Duhameltest 

5.ApplicationofSchwarz 

alternatingmethodto 

solutionofDirichletproblem 

forheat-conductionequation 

innoncylindricalregion 

Problems 

Chapter19.Fourier 

methodforbounded 

regions 

1.Vibrationofabounded 

string.D\’Alembert\’s 

solutionandsuperposition 

ofstandingwaves.Formal 

schemeofthemethodof 

separationofvariables 

2.Heattransferthrougha 

homogeneousslab 

3.Two-dimensionalDirichlet 

problemforPoisson 

equationinarectangle 

4.Vibrationofcircular 

membranewithrigidlyfixed 

boundaryunderactionof 

instantpointimpulse 

initiallyappliedatan 

interiorpointof 

membrane 

5.Heattransferthrough 

two-layercirculardiskwith 

Newtonianirradiationfrom 

mediumofprescribed 

temperature 

6.ApplicationofFourier 

methodtosolutionofmixed 

problems.Reductionto 

denumerablesystemof 

algebraicequations.Perfect 

systems 

Problems 

Chapter20.Integral 

transformmethodin 

unboundedregions 

1.Integraltransformsin 

solutionofboundary-value 

problemsinunbounded 

regions 

2.Fouriertransform,sineand 

cosineFouriertransform. 

DoubleFourierintegraland 

Fourier-Lebesguetheorem. 

Fouriertransformof 

derivatives 

3.UseofFouriertransformsto 

solveCauchyproblemof 

heatconduction 

4.Fourier-Bessel(Hankel) 

transformandsolutionof 

boundary-valueproblems 

withcylindricalsymmetry. 

Fundamentalsolutionof 

heat-conductionequation 

withforcedconvection, 

generatedbycontinuously 

actingsourceof 

incompressibleliquid 

5.Laplace-Carsontransform 

anditssimplest 

properties 

6.Relationshipbetween 

LaplaceandFourier 

transforms.Bromwich 

integralandJordan 

lemma 

7.Relationshipbetweenlimits 

offunctionsandtheir 

transforms.Asymptotic 

expansion 

Problems 

Chapter21.Asymptotic 

expansions.Asymptotic 

solutionofboundary-value 

problems 

1.SolutionofCauchyproblem 

for1-dimensionalFourier 

equation.Shortrelaxation 

timeasymptoticsfor 

solutionofhyperbolic 

heat-conduction 

equation 

2.Asymptoticsequences. 

Expansionsinasymptotic 

series.Definitionsand 

preliminarystatements 

3.Regularandsingular 

perturbations.Differential 

equationsdependingon 

parameters.Scaling.Outer 

andinnerexpansions. 

Matching 

4.Electrodiffusionandthe 

nonequilibriumspacecharge 

inthe1-dimensionalliquid 

junction 

Problems 

Appendix1.Elementsof 

vectoranalysis 

1.Definitions 

2.Gaussdivergencetheorem 

andStokes\’stheorem 

3.Orthogonalcurvilinear 

coordinatesystems.Lame 

coefficients.Basicoperators 

ofvectoranalysis 

Appendix2.Elementsof 

theoryofBessel 

functions 

1.Introduction.Euler\’s 

gammafunction 

2.Generatingfunctionsand 

Besselfunctionsoffirst 

kind.Neumann 

functions 

3.BesselandLipschitz 

integrals 

4.Neumann\’saddition 

theorem 

5.Potentialofdoublelayerof 

dipolesdistributedwith 

unitdensityalongsurface 

ofinfinitelylongcircular 

cylinder.Discontinuous 

Weber-Schafheitlin 

integral.Fourier-Bessel 

doubleintegral 

6.Besselfunctionsof 

imaginawargument. 

SphericalBessel 

functions 

7.Asymptoticbehaviorof 

Besselfunctions 

8.Methodofaveraging. 

Weber\’sintegrals 

9.RepresentationofBessel 

functionsbycontourand 

singularintegrals 

10.Asymptoticrepresentation 

ofBesselfunctionsin 

complexplane 

11.Hintforsolutionof 

cylindricalStefan 

problem 

Problems 

Appendix3.Fourier\’s 

methodand 

$turm-Liouville 

equations 

1.Separationofvariablesand 

eigenvalueproblem 

2.Elementarytheoryof 

regularSturm-Liouville 

equations 

3.Expansionoffunctionsin 

m*inseriesof 

eigenfunctionsofregular 

Sturm-Liouville 

operator 

4.Remarksoncaseofsingular 

operator 

5.Expansionsinto 

Fourier-BesselandDini 

series 

Problems 

Appendix4.Fourier 

integral 

1.Riemann-Lebesgue 

lemma 

2.FundamentalFourier 

theorem 

3.Fouriertransformof 

functionofexponential 

growthatinfinity. 

Relationshipbetweendouble 

FourierintegralandFourier 

series 

4.Convolutiontheoremand 

evaluationofdefinite 

integrals 

5.Abel-summableintegrals 

andsolutionofproblems 

withconcentrated 

capacity 

Problems 

Appendix5.Examplesof 

solutionofnontrivial 

engineeringandphysical 

problems 

1.Heatlossininjectionof 

heatintooilstratum 

2.Nonlineareffectsin 

electrodiffusionequilibrium. 

Saturationofforceof 

repulsionbetweentwo 

symmetricallycharged 

spheresinelectrolyte 

solution 

3.Linearstabilityof 

Neumann\’ssolutionof 

two-phaseCauchy-Stefan 

problem 

References 

Index 

资源下载
资源下载
0
文档家VIP会员升级
没有账号?注册  忘记密码?

社交账号快速登录

微信扫一扫关注
扫码关注后会自动登录