所有分类
  • 所有分类
  • 精品课程
  • 课件资料
  • 标准资料
  • 资料手册
  • 图纸模型
  • 解说文案

混凝土与可持续发展(英文版)2013年版

混凝土与可持续发展(英文版) 
出版时间:2013年 
内容简介 
  回顾混凝土与建筑发展的历程,作者关注并提出了如下的焦点问题及其演变方向:安全性→耐久性→服役性/功能性→可持续性本书全面分析了世界混凝土可持续发展所面临挑战的复杂性和应对方案的多样性。第一章主要从混凝土对社会与经济发展的作用和影响的角度对混凝土可持续性问题进行了探讨;第二章重点介绍国际范围内混凝土可持续发展所涉及的环境评价工具和方法论,并分析了不同的关注焦点、评价方法和时限对混凝土可持续性的影响;第三、四章着重分析了水泥混凝土领域所面临的排放、捕集与吸收和循环的挑战;第五章分析了其他方面的环境挑战;第六、七章给出了综合评述及未来发展趋势的分析;最后列出了500多条参考文献,以供有兴趣的读者深度查阅。本书主要探讨在全球范围内提升混凝土可持续性的系统思考方法和技术途径,以此鼓励和帮助有兴趣的读者(包括政策制定者,建筑与材料领域的专家、工程师,高等学校的教授、学生,以及致力于环境与可持续发展领域的人员等)针对混凝土可持续发展所面临的问题,用系统方法论对其资源可获取性、技术与经济可行性、环境相容性以及社会责任等要素进行全方位的思考和行动。 
目录 
Foreword by V. Mohan Malhotra xi 
Foreword by Wei Sun xiii 
Preface xv 
Acknowledgements xvii 
The authors xix 
1 Introduction 
1.1 The economical impact of concrete 
1.2 Concrete and social progress 
2 Environmental issues 
2.1 Global/regional/local aspects 
2.2 Rating systems 
2.3 Evaluation systems/tools 
2.4 ISO methodology/standards 
2.5 Variation in focus 
2.5.1 Different sectors of the concrete industry tend to focus on different aspects 
2.5.2 Focus: Lifetime expectancy perspectives 
2.5.3 Focus:  
2.5.4 Focus:  
2.6 Traditions/testing 
2.6.1 Example 
2.6.2 Example 
2.6.3 Example 
3 Emissions and absorptions 
3.1 General 
3.2 CO2 emission from cement and concrete production 
3.3 Emission of other greenhouse gases 
3.4 Absorption/carbonation 
3.5 The tools and possible actions 
3.5.1 Increased utilisation of supplementary cementing materials 
3.5.2 Fly ash 
3.5.3 Blast furnace slag 
3.5.4 Silica fume 
3.5.5 Metakaolin 
3.5.6 Rice husk ash (RHA) 
3.5.7 Natural pozzolans 
3.5.8 Other ashes and slags 
3.5.8.1 Sewage sludge incineration ash (SSIA) 
3.5.8.2 Ferroalloy slag 
3.5.8.3 Barium and strontium slag 
3.5.8.4 Other types of slag 
3.5.8.5 Ashes from co-combustion 
3.5.8.6 Wood ash 
3.5.8.7 Fluidised bed ash 
3.5.9 Limestone powder 
3.5.10 Other supplementary cementitious materials 
3.5.11 Improvements and more efficient cement production 
3.5.12 New/other types of cement/binders 
3.5.12.1 High-belite cement(HBC) 
3.5.12.2 Sulphur concrete 
3.5.13 Increased carbonation 
3.5.14 Better energy efficiency in buildings 
3.5.15 Improved mixture design/packing technology/water reduction 
3.5.16 Increased building flexibility, and more sustainable design and recycling practice 
3.5.17 Miscellaneous 
3.5.17.1 Production restrictions 
3.5.17.2 The testing regime 
3.5.18 Carbon capture and storage (CCS) 
3.5.18.1 Capture 
3.5.18.2 Storage 
3.6 Variation in focus 
3.6.1 Focus 1: Lifetime expectancy perspective 
3.6.2 Focus 2:  
3.6.3 Focus 3:  
3.7 Some conclusions 
4 Recycling 
4.1 Recycling of concrete 
4.1.1 Norway 
4.1.2 Japan 
4.1.3 The Netherlands 
4.1.4 Hong Kong, China 
4.1.5 General 
4.1.5.1 Processing technology 
4.1.5.2 Fines 
4.2 Recycling of other materials as aggregate in concrete 
4.2.1 Used rubber tires in concrete 
4.2.2 Aggregate manufactured from fines 
4.2.3 Processed sugar cane ash 
4.2.4 Recycled plastic, e.g., bottles 
4.2.5 Hempcrete and other “straw concretes” 
4.2.6 Papercrete 
4.2.7 Oil palm shell lightweight concrete 
4.2.8 Glass concrete 
4.2.9 Paper mill ash for self-compacting concrete (SCC) 
4.2.10 Slag 
4.2.11 Recycling of “doubtful” waste as aggregate 
4.2.12 Iron mine mill waste (mill tailings) 
4.2.13 Bauxite residue/red sand 
4.2.14 Copper slag 
4.2.15 Other materials 
4.2.16 Waste latex paint 
4.2.17 Fillers for self-compacting concrete 
4.3 Recycling of other materials as reinforcement in concrete 
4.4 Recycling of other materials as binders in concrete 
4.4.1 Waste glass 
4.4.2 Recycling of fluid catalytic cracking catalysts 
4.5 Recycling of cement kiln dust (CKD) 
5 The environmental challenges―other items 
5.1 Aggregate shortage 
5.2 Durability/longevity 
5.3 Energy savings 
5.4 Health 
5.4.1 Skin burn 
5.4.2 The chromium challenge 
5.4.3 Compaction by vibration 
5.4.4 Dust 
5.4.5 Emission and moisture in concrete 
5.4.6 Form oil 
5.4.7 NOx-absorbing concrete 
5.4.7.1 General 
5.4.7.2 Principle of reaction 
5.4.7.3 The catalyst 
5.4.7.4 The effects 
5.4.7.5 Concrete―product areas 
5.4.7.6 Other experiences 
5.4.7.7 Climate change and health 
5.5 Leakage 
5.5.1 General 
5.5.2 Leakage of pollutants from cement and concrete 
5.5.2.1 Leakage from the cement manufacture process 
5.5.2.2 Leakage from concrete 
5.5.3 Concrete to prevent leakage 
5.6 Noise pollution 
5.6.1 Noise reduction in concrete production 
5.6.2 Noise reduction from traffic 
5.6.3 Reduction of noise pollution in buildings 
5.6.4 Step sound reduction in stairways 
5.7 Radiation 
5.7.1 Effects of radioactive radiation on the human body 
5.7.1.1 Alpha particles (or alpha radiation) 
5.7.1.2 Beta particles 
5.7.1.3 X-rays and gamma rays 
5.7.2 Natural radioactivity in building materials 
5.7.3 Radiation from cement and concrete 
5.7.4 Radioactivity risk reduction with cement and concrete 
5.7.4.1 Concrete as a shield of radiation 
5.7.4.2 Encapsulation of radioactive materials with cement and concrete 
5.7.5 Clearance of radioactive concrete 
5.8 Safety 
5.8.1 Concrete as a safety tool 
5.8.2 Concrete safety levels in a climate change perspective 
5.9 Water 
5.9.1 Water shortage 
5.9.2 Managing the increased precipitation 
5.9.2.1 Pervious concrete 
5.9.2.2 Pervious ground with concrete paver systems 
5.9.2.3 Delaying systems 
5.9.3 Reuse of wash water from concrete production 
5.9.4 Escape of wash water from concrete production to freshwater and the sea 
5.9.5 Food supply―artificial fish reefs (AFRs) 
5.9.5.1 History 
5.9.5.2 Where have AFRs been used? 
5.9.5.3 Motivations for establishing AFRs 
5.9.5.4 Design factors 
5.9.5.5 Some examples 
5.9.5.6 Restoration of coral reefs 
5.9.5.7 The Tjuvholmen project 
5.9.6 Erosion protection 
5.10 Wastes 
6 New possibilities and challenges 
6.1 Small hydroelectric power stations 
6.2 Windmills 
6.3 New raw materials/low energy and low CO2 cements 
6.3.1 Principle for clinker composition design 
6.3.2 Lower energy and low-emission clinker preparation 
6.3.3 Performance evaluation of HBC 
6.3.3.1 Strength 
6.3.3.2 Heat evolution characteristics 
6.3.3.3 Chemical corrosion resistance 
6.3.3.4 Drying shrinkage 
6.3.3.5 Existing standards for HBC 
6.3.3.6 Simplified explanation for the excellent performance of HBC 
6.3.4 Latest results on belite-calcium Sulfoaluminate (BCSA) cement 
6.4 New concrete products and components 
7 The future 
References 
Index

资源下载
下载价格10 金币
VIP免费
0
没有账号?注册  忘记密码?

社交账号快速登录