所有分类
  • 所有分类
  • 精品课程
  • 课件资料
  • 标准资料
  • 资料手册
  • 图纸模型
  • 解说文案

国外优秀物理著作原版系列 量子机器学习中数据挖掘的量子计算方法 英文版 (匈)

国外优秀物理著作原版系列 量子机器学习中数据挖掘的量子计算方法 英文版 

作者: (匈)维特克(P Wittek) 著 

出版时间: 2016年版 

内容简介 

  Machine learning is a fascinating area to work in: from detecting anomalous events in live streams of sensor data to identifying emergent topics involving text collection,exciting problems are never too far away. 

  Quantuminformation theory also teems with excitement. By manipulating particles at a subatomic level, we are able to perform Fourier transformation exponentially faster, or search in a database quadratically faster than the classical limit. Superdense coding transmits two classical bits using just one qubit. Quantum encryption is unbreakable-at least in theory. 

目录 

Preface 

Notations 

Part One FundamentaIConcepts 

1 Introduction 

1.1 Learning Theory and Data Mining 

1.2 Why Quantum Computers? 

1.3 A Heterogeneous Model 

1.4 An Overview of Quantum Machine Learning Algorithms 

1.5 Quantum—Like Learning on Classical Computers 

2 Machine Learning 

2.1 Data—DrivenModels 

2.2 FeatureSpace 

2.3 Supervised and Unsupervised Learning 

2.4 GeneralizationPerformance 

2.5 ModeIComplexity 

2.6 Ensembles 

2.7 Data Dependencies and ComputationalComplexity 

3 Quantum Mechanics 

3.1 States and Superposition 

3.2 Density Matrix Representation and Mixed States 

3.3 Composite Systems and Entanglement 

3.4 Evolution 

3.5 Measurement 

3.6 UncertaintyRelations 

3.7 Tunneling 

3.8 Adiabatic Theorem 

3.9 No—CloningTheorem 

4 Quantum Computing 

4.1 Qubits and the Bloch Sphere 

4.2 QuantumCircuits 

4.3 Adiabatic Quantum Computing 

4.4 QuantumParallelism 

4.5 Grover\’s Algorithm 

4.6 ComplexityClasses 

4.7 QuantumInformationTheory 

Part Two ClassicalLearning Algorithms 

5 Unsupervised Learning 

5.1 Principal Component Analysis 

5.2 ManifoldEmbedding 

5.3 K—Means and K—Medians Clustering 

5.4 HierarchicalClustering 

5.5 Density—BasedClustering 

6 Pattern Recogrution and Neural Networks 

6.1 ThePerceptron 

6.2 HopfieldNetworks 

6.3 FeedforwardNetworks 

6.4 DeepLearning 

6.5 ComputationalComplexity 

7 Supervised Learning and Support Vector Machines 

7.1 K—NearestNeighbors 

7.20ptimal Margin Classifiers 

7.3 SoftMargins 

7.4 Nonlinearity and KemelFunctions 

7.5 Least—SquaresFormulation 

7.6 Generalization Performance 

7.7 Multiclass Problems 

7.8 Loss Functions 

7.9 ComputationalComplexity 

8 Regression Analysis 

8.1 Linear Least Squares 

8.2 NonlinearRegression 

8.3 NonparametricRegression 

8.4 ComputationalComplexity 

9 Boosting 

9.1 WeakClassifiers 

9.2 AdaBoost 

9.3 A Family of Convex Boosters 

9.4 Nonconvex Loss Functions 

Part Three Quantum Computing and Machine Learning 

10 Clustering Structure and Quantum Computing 

10.1 Quantum Random Access Memory 

10.2 Calculating Dot Products 

10.3 Quantum Principal Component Analysis 

10.4 Toward Quantum Manifold Embedding 

10.5 QuantumK—Means 

10.6 QuantumK—Medians 

10.7 Quantum Hierarchical Clustering 

10.8 ComputationalComplexity 

11 Quantum Pattern Recognition 

11.1 Quantum Associative Memory 

11.2 The Quantum Perceptron 

11.3 Quantum Neural Networks 

11.4 PhysicaIRealizations 

11.5 ComputationalComplexity 

12 QuantumClassification 

12.1 Nearest Neighbors 

12.2 Support Vector Machines with Grover\’s Search 

12.3 Support Vector Machines with Exponential Speedup 

12.4 ComputationalComplexity 

13 Quantum Process Tomography and Regression 

13.1 Channel—State Duality 

13.2 Quantum Process Tomography 

13.3 Groups, Compact Lie Groups, and the Unitary Group 

13.4 Representation Theory 

13.5 Parallel Application and Storage of the Unitary 

13.6 Optimal State for Learning 

13.7 Applying the Unitary and Finding the Parameter for the Input State 

14 Boosting and Adiabatic Quantum Computing 

14.1 Quantum Annealing 

14.2 Quadratic Unconstrained Binary Optimization 

14.3 Ising Model 

14.4 QBoost 

14.5 Nonconvexity 

14.6 Sparsity, Bit Depth, and Generalization Performance 

14.7 Mapping to Hardware 

14.8 ComputationalComplexity 

Bibliography 

资源下载
下载价格10 金币
VIP免费
0
没有账号?注册  忘记密码?

社交账号快速登录