所有分类
  • 所有分类
  • 精品课程
  • 课件资料
  • 标准资料
  • 资料手册
  • 图纸模型
  • 解说文案

统计物理学方法 英文版 Tomoyasu Tanaka 著 2003年版

统计物理学方法 英文版  

作者:Tomoyasu Tanaka 著 

出版时间:2003年版 

内容简介 

  This book may be used as a textbook for the first or second year graduate student who is studying concurrently such topics as theory of complex analysis, classical mechanics, classical electrodynamics, and quantum mechanics. In a textbook on statistical mechanics, it is common practice to deal with two im-portant areas of the subject: mathematical formulation of the distribution laws of sta- tistical mechanics, and demonstrations of the applicability of statistical mechanics.本书为英文版。 

目录 

Preface 

Acknowledgements 

1 The laws of thermodynamics 

1.1 The thermodynamic system and processes 

1.2 The zeroth law of thermodynamics 

1.3 The thermal equation of state 

1.4 The classical ideal gas 

1.5 The quasistatic and reversible processes 

1.6 The first law of thermodynamics 

1.7 The heat capacity 

1.8 The isothermal and adiabatic processes 

1.9 The enthalpy 

1.10 The second law of thermodynamics 

1.11 The Carnot cycle 

1.12 The thermodynamic temperature 

1.13 The Camot cycle of an ideal gas 

1.14 The Clausius inequality 

1.15 The entropy 

1.16 General integrating factors 

1.17 The integrating factor and cyclic processes 

1.18 Hansen\’\’s cycle 

1.19 Employment of the second law of thermodynamics 

1.20 The universal integrating factor 

Exercises 

2 Thermodynamic relations 

2.1 Thermodynamic potentials 

2.2 Maxwell relations 

2.3 The open system 

2.4 The Clausius-Clapeyron equation 

2.5 The van der Waals equation 

2.6 The grand potential 

Exercises 

3 The ensemble theory 

3.1 Microstate and macrostate 

3.2 Assumption of equal a priori probabilities 

3.3 The number of microstates 

3.4 The most probable distribution 

3.5 The Gibbs paradox 

3.6 Resolution of the Gibbs paradox: quantum ideal gases 

3.7 Canonical ensemble 

3.8 Thermodynamic relations 

3.9 Open systems 

3.10 The grand canonical distribution 

3.11 The grand partition function 

3.12 The ideal quantum gases 

Exercises 

4 System Hamiltonians 

4.1 Representations of the state vectors 

4.2 The unitary transformation 

4.3 Representations of operators 

4.4 Number representation for the harmonic oscillator 

4.5 Coupled oscillators: the linear chain 

4.6 The second quantization for bosons 

4.7 The system of interacting fermions 

4.8 Some examples exhibiting the effect of Fermi-Dirac statistics 

4.9 The Heisenberg exchange Hamiltonian 

4.10 The electron-phonon interaction in a metal 

4.11 The dilute Bose gas 

4.12 The spin-wave Hamiltonian 

Exercises 

5 The density matrix 

5.1 The canonical partition function 

5.2 The trace invariance 

5.3 The perturbation expansion 

5.4 Reduced density matrices 

5.5 One-site and two-site density matrices 

5.6 The four-site reduced density matrix 

5.7 The probability distribution functions for the Ising model 

Exercises 

6 The cluster variation method 

6.1 The variational principle 

6.2 The cumulant expansion 

6.3 The cluster variation method 

6.4 The mean-field approximation 

6.5 The Bethe approximation 

6.6 Four-site approximation 

6.7 Simplified cluster variation methods 

6.8 Correlation function formulation 

6.9 The point and pair approximations in the CFF 

6.10 The tetrahedron approximation in the CFF 

Exercises 

7 Infinite-series representations of correlation functions 

7.1 Singularity of the correlation functions 

7.2 The classical values of the critical exponent 

7.3 An infinite-series representation of the partition function 

7.4 The method of Pade approximants 

7.5 Infinite-series solutions of the cluster variation method 

7.6 High temperature specific heat 

7.7 High temperature susceptibility 

7.8 Low temperature specific heat 

7.9 Infinite series for other correlation functions 

Exercises 

8 The extended mean-field approximation 

8.1 The Wentzel criterion 

8.2 The BCS Hamiltonian 

8.3 The s-d interaction 

8.4 The ground state of the Anderson model 

8.5 The Hubbard model 

8.6 The first-order transition in cubic ice 

Exercises 

9 The exact Ising lattice identities 

9.1 The basic generating equations 

9.2 Linear identities for odd-number correlations 

9.3 Star-triangle-type relationships 

9.4 Exact solution on the triangular lattice 

9.5 Identities for diamond and simple cubic lattices 

9.6 Systematic naming of correlation functions on the lattice 

Exercises 

10 Propagation of short range order 

10.1 The radial distribution function 

10.2 Lattice structure of the superionic conductor AgI 

10.3 The mean-field approximation 

10.4 The pair approximation 

10.5 Higher order correlation functions 

10.6 Oscillatory behavior of the radial distribution function 

10.7 Summary 

11 Phase transition of the two-dimensional Ising model 

11.1 The high temperature series expansion of the partition function 

11.2 The Pfaffian for the Ising partition function 

11.3 Exact partition function 

11.4 Critical exponents 

Exercises 

Appendix 1 The gamma function 

Appendix 2 The critical exponent in the tetrahedron approximation 

Appendix 3 Programming organization of the cluster variation method 

Appendix 4 A unitary transformation applied to the Hubbard Hamiltonian 

Appendix 5 Exact Ising identities on the diamond lattice 

References 

Bibliography 

Index 

资源下载
下载价格10 金币
VIP免费
0
没有账号?注册  忘记密码?

社交账号快速登录