所有分类
  • 所有分类
  • 精品课程
  • 课件资料
  • 标准资料
  • 资料手册
  • 图纸模型
  • 解说文案

半导体物理性能手册 第一卷

半导体物理性能手册 第一卷(英文) 

作者:SadaoAdachi 主编 

出版时间:2014年版 

内容简介 

  《半导体物理性能手册(第1卷)(英文版)》系Springer手册精选原版系列。《半导体物理性能手册(第1卷)(英文版)》主要包括Diamond(C)、Silicon(Si)、Germanium(C)、Gray Tin(a—Sn)、Cubic Silicon Carbide(3C—SiC)、Hexagonal Silicon Carbide(2H—,4H—,6H—SiC,etc.)、Rhombohedral Silicon Carbide(15R—,21R—,24R—SiC,etc.)等内容。 

目  录 

Preface  

Acknowledgments  

Contents of Other Volumes  

1 Diamond (C)  

1.1 Structural Properties  

1.1.1 Ionicity  

1.1.2 Elemental Isotopic Abundance and Molecular Weight  

1.1.3 Crystal Structure and Space Group  

1.1.4 Lattice Constant and Its Related Parameters  

1.1.5 Structural Phase Transition  

1.1.6 Cleavage Plane  

1.2 Thermal Properties  

1.2.1 Melting Point and Its Related Parameters  

1.2.2 Specific Heat  

1.2.3 Debye Temperature  

1.2.4 Thermal Expansion Coefficient  

1.2.5 Thermal Conductivity and Diffusivity  

1.3 Elastic Properties  

1.3.1 Elastic Constant  

1.3.2 Third—Order Elastic Constant  

1.3.3 Young\’s Modulus, Poisson\’s Ratio, and Similar  

1.3.4 Microhardness  

1.3.5 Sound Velocity  

1.4 Phonons and Lattice Vibronic Properties  

1.4.1 Phonon Dispersion Relation  

1.4.2 Phonon Frequency  

1.4.3 Mode Gruneisen Parameter  

1.4.4 Phonon Deformation Potential  

1.5 Collective Effects and Related Properties  

1.5.1 Piezoelectric Constant  

1.5.2 Frohlich Coupling Constant  

1.6 Energy—Band Structure: Energy—Band Gaps  

1.6.1 Basic Properties  

1.6.2 E0—Gap Region  

1.6.3 Higher—Lying Direct Gap  

1.6.4 Lowest Indirect Gap  

1.6.5 Conduction—Valley Energy Separation  

1.6.6 Direct—Indirect—Gap Transition Pressure  

1.7 Energy—Band Structure: Electron and Hole Effective Masses  

1.7.1 Electron Effective Mass: Γ Valley  

1.7.2 Electron Effective Mass: Satellite Valley  

1.7.3 Hole Effective Mass  

1.8 Electronic Deformation Potential  

1.8.1 Intravalley Deformation Potential: Γ Point  

1.8.2 Intravalley Deformation Potential: High—Symmetry Points  

1.8.3 Intervalley Deformation Potential  

1.9 Electron Affinity and Schottky Barrier Height  

1.9.1 Electron Affinity  

1.9.2 Schottky Barrier Height  

1.10 Optical Properties  

1.10.1 Summary of Optical Dispersion Relations  

1.10.2 The Reststrahlen Region  

1.10.3 At or Near the Fundamental Absorption Edge  

1.10.4 The Interband Transition Region  

1.10.5 Free—Carrier Absorption and Related Phenomena  

1.11 Elastooptic, Electrooptic, and Nonlinear Optical Properties  

1.11.1 Elastooptic Effect  

1.11.2 Linear Electrooptic Constant  

1.11.3 Quadratic Electrooptic Constant  

1.11.4 Franz—Keldysh Effect  

1.11.5 Nonlinear Optical Constant  

1.12 Carrier Transport Properties  

1.12.1 Low—Field Mobility: Electrons  

1.12.2 Low—Field Mobility: Holes  

1.12.3 High—Field Transport: Electrons  

1.12.4 High—Field Transport: Holes  

1.12.5 Minority—Carrier Transport: Electrons in ρ—Type Materials  

1.12.6 Minority—Carrier Transport: Holes in n—Type Materials  

1.12.7 Impact Ionization Coefficient 2 Silicon (Si)  

2.1 Structural Properties  

2.1.1 Ionicity  

2.1.2 Elemental Isotopic Abundance and Molecular Weight  

2.1.3 Crystal Structure and Space Group  

2.1.4 Lattice Constant and Its Related Parameters  

2.1.5 Structural Phase Transition  

2.1.6 Cleavage Plane  

2.2 Thermal Properties  

2.2.1 Melting Point and Its Related Parameters  

2.2.2 Specific Heat  

2.2.3 Debye Temperature  

2.2.4 Thermal Expansion Coefficient  

2.2.5 Thermal Conductivity and Diffusivity  

2.3 Elastic Properties  

2.3.1 Elastic Constant  

2.3.2 Third—Order Elastic Constant  

2.3.3 Young\’s Modulus, Poisson\’s Ratio, and Similar  

2.3.4 Microhardness  

2.3.5 Sound Velocity  

2.4 Phonons and Lattice Vibronic Properties  

2.4.1 Phonon Dispersion Relation  

2.4.2 Phonon Frequency  

2.4.3 Mode Gruneisen Parameter  

2.4.4 Phonon Deformation Potential  

2.5 Collective Effects and Related Properties  

2.5.1 Piezoelectric Constant  

2.5.2 Frohlich Coupling Constant  

2.6 Energy—Band Structure: Energy—Band Gaps  

2.6.1 Basic Properties  

2.6.2 E0—Gap Region  

2.6.3 Higher—Lying Direct Gap  

2.6.4 Lowest Indirect Gap  

2.6.5 Conduction—Valley Energy Separation  

2.6.6 Direct—Indirect—Gap Transition Pressure  

2.7 Energy—Band Structure: Electron and Hole Effective Masses  

2.7.1 Electron Effective Mass: Γ Valley  

2.7.2 Electron Effective Mass: Satellite Valley  

2.7.3 Hole Effective Mass  

2.8 Electronic Deformation Potential  

2.8.1 Intravalley Deformation Potential: Γ Point  

2.8.2 Intravalley Deformation Potential: High—Symmetry Points  

2.8.3 Intervalley Deformation Potential  

2.9 Electron Affinity and Schottky Barrier Height  

2.9.1 Electron Affinity  

2.9.2 Schottky Barrier Height  

2.10 Optical Properties  

2.10.1 Summary of Optical Dispersion Relations  

2.10.2 The Reststrahlen Region  

2.10.3 At or Near the Fundamental Absorption Edge  

2.10.4 The Interband Transition Region  

2.10.5 Free—Carrier Absorption and Related Phenomena  

2.11 Elastooptic, Electrooptic, and Nonlinear Optical Properties  

2.11.1 Elastooptic Effect  

2.11.2 Linear Electrooptic Constant  

2.11.3 Quadratic Electrooptic Constant  

2.11.4 Franz—Keldysh Effect  

2.11.5 Nonlinear Optical Constant  

2.12 Carrier Transport Properties  

2.12.1 Low—Field Mobility: Electrons  

2.12.2 Low—Field Mobility: Holes  

2.12.3 High—Field Transport: Electrons  

2.12.4 High—Field Transport: Holes  

2.12.5 Minority—Carrier Transport: Electrons in p—Type Materials  

2.12.6 Minority—Carrier Transport: Holes in n—Type Materials  

2.12.7 Impact Ionization Coefficient 3 Germanium (C)  

3.1 Structural Properties  

3.1.1 Ionicity  

3.1.2 Elemental Isotopic Abundance and Molecular Weight  

3.1.3 Crystal Structure and Space Group  

3.1.4 Lattice Constant and Its Related Parameters  

3.1.5 Structural Phase Transition  

3.1.6 Cleavage Plane  

3.2 Thermal Properties  

3.2.1 Melting Point and Its Related Parameters  

3.2.2 Specific Heat  

3.2.3 Debye Temperature  

3.2.4 Thermal Expansion Coefficient  

3.2.5 Thermal Conductivity and Diffusivity  

3.3 Elastic Properties  

3.3,1 Elastic Constant  

3.3.2 Third—Order Elastic Constant  

3.3.3 Young\’s Modulus, Poisson\’s Ratio, and Similar  

3.3.4 Microhardness  

3.3.5 Sound Velocity  

3.4 Phonons and Lattice Vibronic Properties  

3.4.1 Phonon Dispersion Relation  

3.4.2 Phonon Frequency  

3.4.3 Mode Gruneisen Parameter  

3.4.4 Phonon Deformation Potential  

3.5 Collective Effects and Related Properties  

3.5.1 Piezoelectric Constant  

3.5.2 Frohlich Coupling Constant  

3.6 Energy—Band Structure: Energy—Band Gaps  

3.6.1 Basic Properties  

3.6.2 Eo—Gap Region  

3.6.3 Higher—Lying Direct Gap  

3.6.4 Lowest Indirect Gap  

3.6.5 Conduction—Valley Energy Separation  

3.6.6 Direct—Indirect—Gap Transition Pressure  

3.7 Energy—Band Structure: Electron and Hole Effective Masses  

3.7.1 Electron Effective Mass: F Valiey  

3.7.2 Electron Effective Mass: Satellite Valley  

3.7.3 Hole Effective Mass  

3.8 Electronic Deformation Potential  

3.8.1 Intravalley Deformation Potential: Γ Point  

3.8.2 Intravalley Deformation Potential: High—Symmetry Points  

3.8.3 Intervalley Deformation Potential  

3.9 Electron Affinity and Schottky Barrier Height  

3.9.1 Electron Affinity  

3.9.2 Schottky Barrier Height  

3.10 Optical Properties  

3.10.1 Summary of Optical Dispersion Relations  

3.10.2 The Reststrahlen Region  

3.10.3 At or Near the Fundamental Absorption Edge  

3.10.4 The Interband Transition Region  

3.10.5 Free—Carrier Absorption and Related Phenomena  

3.11 Elastooptic, Electrooptic, and Nonlinear Optical Properties  

3.11.1 Elastooptic Effect  

3.11.2 Linear Electrooptic Constant  

3.11.3 Quadratic Electrooptic Constant  

3.11.4 Franz—Keldysh Effect  

3.11.5 Nonlinear Optical Constant  

3.12 Carrier Transport Properties  

3.12.1 Low—Field Mobility: Electrons  

3.12.2 Low—Field Mobility: Holes  

3.12.3 High—Field Transport: Electrons  

3.12.4 High—Field Transport: Holes  

3.12.5 Minority—Carrier Transport: Electrons in p—Type Materials  

3.12.6 Minority—Carrier Transport: Holes in n—Type Materials  

3.12.7 Impact Ionization Coefficient 4 Gray Tin (a—Sn)  

4.1 Structural Properties  

4.1.1 lonicity  

4.1.2 Elemental Isotopic Abundance and Molecular Weight  

4.1.3 Crystal Structure and Space Group  

4.1.4 Lattice Constant and Its Related Parameters  

4.1.5 Structural Phase Transition  

4.1.6 Cleavage Plane  

4.2 Thermal Properties  

4.2.1 Melting Point and Its Related Parameters  

4.2.2 Specific Heat  

4.2.3 Debye Temperature  

4.2.4 Thermal Expansion Coefficient  

4.2.5 Thermal Conductivity and Diffusivity  

4.3 Elastic Properties  

4.3.1 Elastic Constant  

4.3.2 Third—Order Elastic Constant  

4.3.3 Young\’s Modulus, Poisson\’s Ratio, and Similar  

4.3.4 Microhardness  

4.3.5 Sound Velocity  

4.4 Phonons and Lattice Vibronic Properties  

4.4.1 Phonon Dispersion Relation  

4.4.2 Phonon Frequency  

4.4.3 Mode Gruneisen Parameter  

4.4.4 Phonon Deformation Potential  

4.5 Collective Effects and Related Properties  

4.5.1 Piezoelectric Constant  

4.5.2 Frohlich Coupling Constant  

4.6 Energy—Band Structure: Energy—Band Gaps  

4.6.1 Basic Properties  

4.6.2 Eo—Gap Region  

4.6.3 Higher—Lying Direct Gap  

4.6.4 Lowest Indirect Gap  

4.6.5 Conduction—Valley Energy Separation  

4.6.6 Direct—Indirect—Gap Transition Pressure  

4.7 Energy—Band Structure: Electron and Hole Effective Masses  

4.7.1 Electron Effective Mass: Γ Valley  

4.7.2 Electron Effective Mass: Satellite Valley  

4.7.3 Hole Effective Mass  

4.8 Electronic Deformation Potential  

4.8.1 Intravalley Deformation Potential: Γ Point  

4.8.2 Intravalley Deformation Potential: High—Symmetry Points  

4.8.3 Intervalley Deformation Potential  

4.9 Electron Affinity and Schottky Barrier Height  

4.9.1 Electron Affinity  

4.9.2 Schottky Barrier Height  

4.10 Optical Properties  

4.10.1 Summary of Optical Dispersion Relations  

4.10.2 The Reststrahlen Region  

4.10.3 At or Near the Fundamental Absorption Edge  

4.10.4 The Interband Transition Region  

4.10.5 Free—Carrier Absorption and Related Phenomena  

4.11 Elastooptic, Electrooptic, and Nonlinear Optical Properties  

4.11.1 Elastooptic Effect  

4.11.2 Linear Electrooptic Constant  

4.11.3 Quadratic Electrooptic Constant  

4.11.4 Franz—Keldysh Effect  

4.11.5 Nonlinear Optical Constant  

4.12 Carrier Transport Properties  

4.12.1 Low—Field Mobility: Electrons  

4.12.2 Low—Field Mobility: Holes  

4.12.3 High—Field Transport: Electrons  

4.12.4 High—Field Transport: Holes  

4.12.5 Minority—Carrier Transport: Electrons in p—Type Materials  

4.12.6 Minority—Carrier Transport: Holes in n—Type Materials  

4.12.7 Impact Ionization Coefficient  

……  

5 Cubic Silicon Carbide (3C—SiC)  

6 Hexagonal Silicon Carbide (2H—, 4H—, 6H—SiC, etc.)  

7 Rhombohedral Silicon Carbide (15R—, 21R—, 24R—SiC, etc.) 

资源下载
下载价格10 金币
VIP免费
0
没有账号?注册  忘记密码?

社交账号快速登录