所有分类
  • 所有分类
  • 精品课程
  • 课件资料
  • 标准资料
  • 资料手册
  • 图纸模型
  • 解说文案

非线性物理学导论 英文版 LuiLam 著 1999年版

非线性物理学导论 英文版 

作者: LuiLam 著 

出版时间: 1999年版 

内容简介 

  A revolution occurred quietly in teh development of physics-or,more accu-rately,of science-in the last three decades.The revolution touches uponevery discipline in both the natural and social sciences.We are referring to the birth of a new science-nonlinear science-which,for the sake of presenta-tion,may be diveded into six parts:fractals,chaos,pattrn formation,sol-itons,cellular automata,and complex systems.本书为英文版! 

目录 

     Contents 

   Preface 

   1 Introduction 

    LuiLam 

    1.1 A Quiet Revolution 

    1.2 Nonlinearity 

    1.3 Nonlinear Science 

    1.3.1 Fractals 

    1.3.2 Chaos 

    1.3.3 Pattem Fonnation 

    1.3.4 Solitons 

    1.3.5 Cellular Automata 

    1.3.6 Complex Systems 

    1.4 Remarks 

    References 

   Part I Fractals and Multifractals 

    2 Fractals and Diffusive Growth 

    Thomas C. Halsey 

    2.1 Percolation 

    2.2 Diffusion-Limited Aggregation 

    2.3 Electrostatic Analogy 

    2.4 Physical Applications ofDLA 

    2.4.1 Electrodeposition with Secondary Current Distribution 

    2.4.2 Diffusive Electrodeposition 

    Problems 

    References 

    3 Multifractality 

    Thomas C. Halsey 

    3.1 Defimtionof(q)and f(a) 

    3.2 SystematicDefinitionofT(q) 

    3.3 The Two-Scale Cantor Set 

    3.3.1 Limiting Cases 

    3.3.2 Stirling Formula andf(a) 

    3.4 Multifractal Correlations 

    3.4.1 Operator Product Expansion and Multifractality 

    3.4.2 Correlations oflso-flt Sets 

    3.5 Numerical Measurements of f(a) 

    3.6 Ensemble Averaging and (q) 

    Problems 

    References 

    4 Scaling Arguments and Diffusive Growth 

    Thomas C. Halsey 

    4.1 The Information Dimension 

    4.2 The Turkevich-Scher Scaling Relation 

    4.3 The Electrostatic Scaling Relation 

    4.4 Scaling ofNegative Moments 

    4.5 Conclusions 

    Problems 

    References 

   Part II Chaos and Randomness 

    5 Introduction to Dynamical Systems 

    Stephen G. Eubank and J. Doyne Farmer 

    5.1 Introduction 

    5.2 Detenninism Versus Random Processes 

    5.3 ScopeofPartII 

    5.4 Deterministic Dynamical Systems and State Space 

    5.5 Classification 

    5.5.1 PropertiesofDynamical Systems 

    5.5.2 A BriefTaxonomy ofDynamical Systems Models 

    5.5.3 The Relationship Between Maps and Flows 

    5.6 Dissipative Versus Conservative Dynamical Systems 

    5.7 Stability 

    5.7.1 Lmearization 

    5.7.2 TheSpectrumofLyapunovExponents 

    5.7.3 InvariantSets 

    5.7.4 Attractors 

    5.7.5 Regular Attractors 

    5.7.6 ReviewofStability 

    5.8 Bifurcations 

    5.9 Chaos 

    5.9.1 Binary Shift Map 

    5.9.2 Chaos in Flows 

    5.9.3 The Rossler Attractor 

    5.9.4 The Lorenz Attractor 

    5.9.5 Stable and Unstable Manifolds 

    5.10 Homoclinic Tangle 

    5.10.1 Chaos in Higher Dimensions 

    5.10.2 Bifurcations Between Chaotic Attractors 

    Problems 

    References 

    6 Probability, Random Processes, and the 

    Statistfcal Description ofDynanucs 

    Stephen G. EubankandJ. Doyne Farmer 

    6.1 Nondeterminism in Dynamics 

    6.2 Measure and Probability 

    6.2.1 Estimating a Density Function from Data 

    6.3 Nondetenninistic Dynamics 

    6.4 Averaging 

    6.4.1 Stationarity 

    6.4.2 Time Averages and Ensemble Averages 

    6.4.3 Mixing 

    6.5 Characterization ofDistributions 

    6.5.1 Moments 

    6.5.2 Entropy and Infonnation 

    6.6 Fractals, Dimension, and the Uncertainty Exponent 

    6.6.1 Pointwise Dimension 

    6.6.2 Information Dimension 

    6.6.3 Fractal Dimension 

    6.6.4 Generalized Dimensions 

    6.6.5 Estimating Dimension from Data 

    6.6.6 Embedding Dimension 

    6.6.7 Fat Fractals 

    6.6.8 Lyapunov Dimension 

    6.6.9 Metric Entropy 

    6.6.10 Pesin\’s Identity 

    6.7 Dimensions, Lyapunov Exponents, and Metric Entropy 

    in the Presence ofNoise 

    Problems 

    References 

    7 Modeling Chaotic Systems 

    Stephen G. Eubank and J. Doyne Farmer 

    7.1 Chaos and Prediction 

    7.2 State Space Reconstruction 

    7.2.1 Derivative Coordinates 

    7.2.2 Delay Coordinates 

    7.2.3 Broomhead and King Coordinates 

    7.2.4 Reconstruction as Optimal Encoding 

    7.3 Modeling Chaotic Dynamics 

    7.3.1 Choosing an Appropriate Model 

    7.3.2 OrderofApproximation 

    7.3.3 ScalingofErrors 

    7.4 System Characterization 

    7.5 Noise Reduction 

    7.5.1 Shadowing 

    7.5.2 Optimal Solution ofShadowing Problem 

    with Euclidean Nonn 

    7.5.3 Numerical Results 

    7.5.4 Statistical Noise Reduction 

    7.5.5 Limits to Noise Reduction 

    Problems 

    References 

   Part III Pattero Formation and Disorderly Growth 

    8 Phenomenology of Growth 

    Leonard M. Sander 

    8.1 Aggregation: Pattems and Fractals Far from Equilibrium 

    8.2 Natural Systems 

    8.2.1 Ballistic Growth 

    8.2.2 Diffusion-Limited Growth 

    8.2.3 GrowthofColloidsandAerosols 

    Problems 

    References 

    9 Models and Applications 

    Leonard M. Sander 

    9.1 Ballistic Growth 

    9.1.1 Simulations and Scaling 

    9.1.2 Continuum Models 

    9.2 Diffusion-Limited Growth 

    9.2.1 Simulations and Scaling 

    9.2.2 The Mullins-Sekerka Instability 

    9.2.3 Orderiy and Disorderiy Growth 

    9.2.4 Electrochemical Deposition: A Case Study 

    9.3 Cluster-Cluster Aggregation 

    Appendix: A DLA Program 

    Problems 

    References 

   Part IV SoBtons 

    10 Integrable Systems 

    LuiLam 

    10.1 Introduction 

    10.2 Origin and History of Solitons 

    10.3 Integrability and Conservation Laws 

    10.4 Soliton Equations and their Solutions 

    10.4.1 Korteweg-de Vries Equation 

    10.4.2 Nonlinear Schrodinger Equation 

    10.4.3 Smc-Gordon Equation 

    10.4.4 Kadomtsev-Petviashvili Equation 

    10.5 MethodsofSolution 

    10.5.1 Inverse Scattering Method 

    10.5.2 Bficklund Transformation 

    10.5.3 Hirota Method 

    10.5.4 Numerical Method 

    10.6 Physical Soliton Systems 

    10.6.1 ShallowWaterWaves 

    10.6.2 Dislocations in Crystals 

    10.6.3 Self-FocusingofLight 

    10.7 Conclusions 

    Problems 

    References 

    11 Nonintegrable Systems 

    LuiLam 

    11.1 Introduction 

    11.2 Nonintegrable Soliton Equations with Hamiltonian Structures 

    11.2.1 The Equation 

    11.2.2 Double Sine-Gordon Equation 

    11.3 Nonlinear Evolution Equations 

    11.3.1 Fisher Equation 

    11.3.2 The Damped Equation 

    11.3.3 The Damped Driven Sine-Gordon Equation 

    11.4 A Method of Constructing Soliton Equations 

    11.5 FonnationofSolitons 

    11.6 Perturbations 

    11.7 Soliton Statistical Mechanics 

    11.7.1 TheSystem 

    11.7.2 The Sine-Gordon System 

    11.8 Solitons in Condensed Matter 

    11.8.1 Liquid Crystals 

    11.8.2 Polyacetylene 

    11.8.3 Optical Fibers 

    11.8.4 Magnetic Systems 

    11.9 Conclusions 

    Problems 

    References 

   Part V Special Topics 

    12 Cellular Automata and Discrete Physics 

    David E. Hiebeler and Robert Tatar 

    12.1 Introduction 

    12.1.1 A Well-Kaown Example: Life 

    12.1.2 Cellular Automata 

    12.1.3 The Information Mechanics Group 

    12.2 Physical Modeling 

    12.2.1 CA Quasiparticles 

    12.2.2 Physical Properties from CA Simulations 

    12.2.3 Diffusion 

    12.2.4 SoundWaves 

    12.2.5 Optics 

    12.2.6 Chemical Reactions 

    12.3 Hardware 

    12.4 Current Sources of Literature 

    12.5 An Outstanding Problem in CA Simulations 

    Problems 

    References 

    13 Visualization Techniques for Cellular Dynamata 

    Ralph H. Abraham 

    13.1 Historical Introduction 

    13.2 Cellular Dynamata 

    13.2.1 Dynamical Schemes 

    13.2.2 Complex Dynamical Systems 

    13.2.3 CD Definitions 

    13.2.4 CD States 

    13.2.5 CD Simulation 

    13.2.6 CD Visualization 

    13.3 An Example ofZeeman\’s Method 

    13.3.1 Zeeman\’s Heart Model: Standard Cell 

    13.3.2 Zeeman\’s Heart Model: Physical Space 

    13.3.3 Zeeman\’s Heart Model: Beating 

    13.4 The Graph Method 

    13.4.1 The Biased Logistic Scheme 

    13.4.2 The Logistic/Diffusion Lattice 

    13.4.3 The Global State Graph 

    13.5 The Isochron Coloring Method 

    13.5.1 Isochrons ofa Periodic Attractor 

    13.5.2 Coloring Strategies 

    13.6 Conclusions 

    References 

    14 From Laminar Flow to Turbulence 

    GeoffreyK. Vallis 

    14.1 Preamble and Basic Ideas 

    14.1.1 What Is Turbulence? 

    14.2 From Laminar Flow to Nonlinear Equilibration 

    14.2.1 A Linear Analysis: The Kelvin-Helmholz Instability 

    14.2.2 A Weakly Nonlinear Analysis: Landau\’s Equation 

    14.3 From Nonlinear Equilibration to Weak Turbulence 

    14.3.1 The Quasi-Periodic Sequence 

    14.3.2 The Period Doubling Sequence 

    14.3.3 The Intermittent Sequence 

    14.3.4 Fluid Relevance and Experimental Evidence 

    14.4 Strong Turbulence 

    14.4.1 Scaling Arguments for Inertial Ranges 

    14.4.2 Predictability of Strong Turbulence 

    14.4.3 Renormalizing the Diffusivity 

    14.5 Remarks 

    References 

    15 Active Walks: Pattern Formation, Self-Organization, and 

    Complex Systems LuiLam 

    15.1 Introduction 

    15.2 Basic Concepts 

    15.3 Continuum Description 

    15.4 Computer Models 

    15.4.1 ASingleWalker 

    15.4.2 Branching 

    15.4.3 Multiwalkers and Updating Rules 

    15.4.4 Track Pattems 

    15.5 Three Applications 

    15.5.1 Dielectric Breakdown in a Thin Layer ofLiquid 

    15.5.2 lon Transport in Glasses 

    15.5.3 Ant Trails in Food Collection 

    15.6 Intrinsic Abnormal Growth 

    15.7 Landscapes and Rough Surfaces 

    15.7.1 GrooveStates 

    15.7.2 Localization-Delocalization Transition 

    15.7.3 Scaling Properties 

    15.8 FuzzyWalks 

    15.9 Related Developments and Open Problems 

    15.10 Conclusions 

    References 

    Appendix: Historical Remarks on Chaos 

    Michael Nauenberg 

   Contributors 

   Index 

    

资源下载
下载价格10 金币
VIP免费
0
没有账号?注册  忘记密码?

社交账号快速登录