所有分类
  • 所有分类
  • 精品课程
  • 课件资料
  • 标准资料
  • 资料手册
  • 图纸模型
  • 解说文案

自动控制原理与设计(第六版 英文版)

自动控制原理与设计(第六版 英文版) 
作者:(美)富兰克林 著 
出版时间:2013年版 
内容简介 
  《自动控制原理与设计(英文版)(第6版)》是自动控制领域的经典著作,以自动控制系统的分析和设计为主线,在回顾自动控制系统动态响应和反馈控制的基本特性基础上,重点介绍了自动控制系统的三种主流设计方法,即根轨迹设计法、频率响应设计法和状态空间设计法。此外,还阐述了非线性系统的分析与设计,给出了一系列经典控制系统设计实例。全书在阐述自动控制原理和设计方法的过程中,适时地穿插有MATLAB仿真源代码和仿真实验结果。 
目录 
1 An Overview and Brief History of Feedback Control 
A Perspective on Feedback Control 
Chapter Overview 
1.1 A Simple Feedback System 
1.2 A First Analysis of Feedback 
1.3 A Brief History 
1.4 An Overview of the Book 
Problems 
2 Dynamic Response 
A Perspective on System Response 
Chapter Overview 
2.1 Review of Laplace Transforms 
2.1.1 Response by Convolution 
2.1.2 Transfer Functions and Frequency Response 
2.1.3 The L Laplace Transform 
2.1.4 Properties of Laplace Transforms 
2.1.5 Inverse LaplaceTransform by Partial-Fraction Expansion 
2.1.6 The Final Value Theorem 
2.1.7 Using Laplace Transforms to Solve Problems 
2.1.8 Poles and Zeros 
2.1.9 Linear System Analysis Using MATLAB 
2.2 System Modeling Diagrams 
2.2.1 The Block Diagram 
2.2.2 Block Diagram Reduction Using MATLAB 
2.3 Effect of Pole Locations 
2.4 Time-Domain Specifications 
2.4.1 Rise Time 
2.4.2 Overshoot and Peak Time 
2.4.3 Settling Time 
2.5 Effects of Zeros and Additional Poles 
2.6 Stability 
2.6.1 Bounded Input–Bounded Output Stability 
2.6.2 Stability of LTI Systems 
2.6.3 Routh’s Stability Criterion 
2.7 Historical Perspective 
Problems 
3 A First Analysis of Feedback 
A Perspective on the Analysis of Feedback 
Chapter Overview 
3.1 The Basic Equations of Control 
3.1.1 Stability 
3.1.2 Tracking 
3.1.3 Regulation 
3.1.4 Sensitivity 
3.2 Control of Steady-State Error to Polynomial Inputs: SystemType 
3.2.1 System Type for Tracking 
3.2.2 System Type for Regulation and Disturbance Rejection 
3.3 The Three-Term Controller: PID Control 
3.3.1 Proportional Control (P) 
3.3.2 Proportional Plus Integral Control (PI) 
3.3.3 PID Control 
3.3.4 Ziegler–Nichols Tuning of the PID Controller 
3.4 Introduction to Digital Control 
3.5 Historical Perspective 
Problems 
4 The Root-Locus Design Method 
A Perspective on the Root-Locus Design Method 
Chapter Overview 
4.1 Root Locus of a Basic Feedback System 
4.2 Guidelines for Determining a Root Locus 
4.2.1 Rules for Plotting a Positive (180°) Root Locus 
4.2.2 Summary of the Rules for Determining a Root Locus 
4.2.3 Selecting the Parameter Value 
4.3 Selected Illustrative Root Loci 
4.4 Design Using Dynamic Compensation 
4.4.1 Design Using Lead Compensation 
4.4.2 Design Using Lag Compensation 
4.4.3 Design Using Notch Compensation 
4.4.4 Analog and Digital Implementations 
4.5 A Design Example Using the Root Locus 
4.6 Extensions of the Root-Locus Method 
4.6.1 Rules for Plotting a Negative (0°) Root Locus 
4.7 Historical Perspective 
Problems 
5 The Frequency-Response Design Method 
A Perspective on the Frequency-Response Design Method 
Chapter Overview 
5.1 Frequency Response 
5.1.1 Bode Plot Techniques 
5.1.2 Steady-State Errors 
5.2 Neutral Stability 
5.3 The Nyquist Stability Criterion 
5.3.1 The Argument Principle 
5.3.2 Application to Control Design 
5.4 Stability Margins 
5.5 Bode’s Gain–Phase Relationship 
5.6 Closed-Loop Frequency Response 
5.7 Compensation 
5.7.1 PD Compensation 
5.7.2 Lead Compensation 
5.7.3 PI Compensation 
5.7.4 Lag Compensation 
5.7.5 PID Compensation 
5.7.6 Design Considerations 
5.8 Historical Perspective 
Problems 
6 State-Space Design 
A Perspective on State-Space Design 
Chapter Overview 
6.1 Advantages of State-Space 
6.2 System Description in State-Space 
6.3 Block Diagrams and State-Space 
6.3.1 Time and Amplitude Scaling in State-Space 
6.4 Analysis of the State Equations 
6.4.1 Block Diagrams and Canonical Forms 
6.4.2 Dynamic Response from the State Equations 
6.5 Control-Law Design for Full-State Feedback 
6.5.1 Finding the Control Law 
6.5.2 Introducing the Reference Input with Full-State Feedback 
6.6 Selection of Pole Locations for Good Design 
6.6.1 Dominant Second-Order Poles 
6.6.2 Symmetric Root Locus (SRL) 
6.6.3 Comments on the Methods 
6.7 Estimator Design 
6.7.1 Full-Order Estimators 
6.7.2 Reduced-Order Estimators 
6.7.3 Estimator Pole Selection 
6.8 Compensator Design: Combined Control Law and Estimator 
6.9 Introduction of the Reference Input with the Estimator 
6.9.1 A General Structure for the Reference Input 
6.9.2 Selecting the Gain 
6.10 Integral Control and Robust Tracking 
6.10.1 Integral Control 
6.11 Historical Perspective 
Problems 
7 Nonlinear Systems 
Perspective on Nonlinear Systems 
Chapter Overview 
7.1 Introduction and Motivation: Why Study Nonlinear Systems? 
7.2 Analysis by Linearization 
7.2.1 Linearization by Small-Signal Analysis 
7.2.2 Linearization by Nonlinear Feedback 
7.2.3 Linearization by Inverse Nonlinearity 
7.3 Equivalent Gain Analysis Using the Root Locus 
7.3.1 Integrator Antiwindup 
7.4 Equivalent Gain Analysis Using Frequency Response: Describing Functions 
7.4.1 Stability Analysis Using Describing Functions 
7.5 Historical Perspective 
Problems 
8 Control System Design: Principles and Case Studies 
A Perspective on Design Principles 
Chapter Overview 
8.1 An Outline of Control Systems Design 
8.2 Design of a Satellite’s Attitude Control 
8.3 Lateral and Longitudinal Control of a Boeing 747 
8.3.1 Yaw Damper 
8.3.2 Altitude-Hold Autopilot 
8.4 Control of the Fuel–Air Ratio in an Automotive Engine 
8.5 Control of the Read/Write Head Assembly of a Hard Disk 
8.6 Control ofRTP Systems in SemiconductorWafer Manufacturing 
8.7 Chemotaxis or How E. Coli Swims Away from Trouble 
8.8 Historical Perspective 
Problems 
Appendix Solutions to the Review Questions

资源下载
下载价格10 金币
VIP免费
0
没有账号?注册  忘记密码?

社交账号快速登录